B. Meng et al. / Tetrahedron Letters 50 (2009) 1947–1950
1949
Research Program of China (973 Program, 2009CB825300), and
CAS Academician Foundation of Zhejiang Province for financial
support.
I
PhSe
O
Br
H
H
NOE
NOE
Supplementary data
Z-5b
Z-5g
Supplementary data associated with this article can be found, in
Figure 3. Configurations of Z-5b, 5g.
References and notes
1. 1-Cyclopropylallenes could be conveniently prepared by the classical reaction
of cyclopropyl Grignard reagent with toluene-4-sulfonic acid prop-2-ynyl ester
catalyzed by copper (I) bromide. For details see: Brandsma, L.; Verkruijsse, H. D.
Synthesis of Acetylenes, Allenes and Cumlenes; Elsevier: Netherlands, 1981.
2. For recent reviews and accounts of allenes see: (a) Yamamoto, Y.;
Radhakrishnan, U. Chem. Soc. Rev. 1999, 28, 199; (b) Ma, S. Acc. Chem. Res.
2003, 36, 701; (c) Larock, R. C. J. Organomet. Chem. 1999, 576, 111; (d) Grigg, R.;
Sridharan, V. J. Organomet. Chem. 1999, 576, 65; (e) Zimmer, R.; Dinesh, C. U.;
Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067; (f) Hashmi, A. S. K. Angew.
Chem. 2000, 112, 3737; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2000, 39, 3590;
(g) Ma, S.; Li, L. Synlett 2001, 1206; (h) Reissing, H. U.; Schade, W.; Amombo, M.
O.; Pulz, R.; Hausherr, A. Pure Appl. Chem. 2002, 175; (i) Ma, S. Carbopalladation
of Allenes. In Handbook of Organopalladium Chemistry for Organic Synthesis;
Negishi, E., Ed.; Wiley-Interscience: NewYork, 2002; p 1491.
3. Selected reviews on methylenecyclopropanes: (a) Brandi, A.; Goti, A. Chem. Rev.
1998, 98, 589; (b) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem. Rev. 2003,
103, 1213; (c) Nakamura, I.; Yamamoto, Y. Adv. Synth. Catal. 2002, 344, 111.
4. (a) Yu, L.; Meng, B.; Huang, X. Synlett 2007, 2919; (b) Yu, L.; Meng, B.; Huang, X.
Synlett 2008, 1331; (c) Yu, L.; Meng, B.; Huang, X. J. Org. Chem. 2008, 73, 6895.
5. Select recent article about difunctional reactions: (a) Morgan, J. B.; Miller, S. P.;
Morken, J. P. J. Am. Chem. Soc. 2003, 125, 8702; (b) Rauhut, C. B.; Melzig, L.;
Knochel, P. Org. Lett. 2008, 10, 3891; (c) Shi, M.; Jiang, M.; Liu, L.-P. Org. Biomol.
Chem. 2007, 5, 438.
6. Siriwardana, A. I.; Nakamura, I.; Yamamoto, I. Tetrahedron Lett. 2003, 44, 985.
7. Selected recent articles about conjugated dienes: (a) Zhou, C.; Fu, C. L.; Ma, S.
M. Tetrahedron 2007, 63, 7612; (b) Shi, M.; Wang, B. Y.; Huang, J. W. J. Org.
Chem. 2005, 70, 5606; (c) Wong, K.; Hung, Y. Tetrahedron Lett. 2003, 44, 8033;
(d) Taylor, D. K.; Avery, T. D.; Greatrex, B. W.; Tiekink, E. R. T.; Macreadie, I. G.;
Macreadie, P. I.; Humphries, A. D.; Kalkanidis, M.; Fox, E. N.; Klonis, N.; Tilley, L.
J. Med. Chem. 2004, 47, 1833.
8. Selected recent articles about homoallylic compounds: (a) Shi, M.; Xu, B. Org.
Lett. 2002, 4, 2145; (b) Xu, B.; Shi, M. Org. Lett. 2003, 5, 1415; (c) Liu, L. P.; Shi,
M. J. Org. Chem. 2004, 69, 2805; (d) Huang, J. W.; Shi, M. Tetrahedron 2004, 60,
2057; (e) Huang, X.; Yu, L. Synlett 2005, 2953; (f) Chen, Y.; Shi, M. J. Org. Chem.
2004, 69, 426; (g) Huang, J. W.; Shi, M. Tetrahedron Lett. 2003, 44, 9343; (h)
Shao, L. X.; Huang, J. W.; Shi, M. Tetrahedron 2004, 60, 11895; (i) Zhou, H. W.;
Huang, X.; Chen, W. L. Synlett 2003, 2080.
E+
E
E
R2
H
E
C
=
R1
Nu
R2
R1
R1
R1
R2
R2
1
5
5 (A)
Nu-
R2
E
R2
H
R2
H
E
E
R1
=
H
R1
4 (1Z 3Z)
H
R1
H
5 (B)
Scheme 2. Proposed mechanism for the reaction.
Ph
I
Ph
Br
Br
Pd(PPh3)2Cl2, CuI, Et3N
Ph
Ph
4a
6
90%
NaBH4
(PhSe)2
93%
I
Ph
PhB(OH)2
Pd(PPh3)4, K3PO4 3H2O
74%
.
PhSe
PhSe
Ph
Ph
8
7
Scheme 3. The synthetic utilities of Z-4a.
9. Negishi, E.; de Meijere, A., et al Organopalladium Chemistry for Organic Synthesis;
Wiley: New York, 2002. pp 493–529, and references cited therein.
10. (a) Hopf, H.; Jager, H.; Ernst, L. Liebigs Ann. 1996, 815; (b) Kros, A.; Nolte, R. J.
M.; Sommerdijk, N. A. J. M. Adv. Mater. 2002, 14, 1779; (c) Carroll, R. L.;
Gorman, C. B. Angew. Chem., Int. Ed. 2002, 41, 4378; (d) McQuade, D. T.; Pullen,
A. E.; Swager, T. M. Chem. Rev. 2000, 100, 2537; (e) Tour, J. M. Acc. Chem. Res.
2000, 33, 791; (f) Liphardt, M.; Goonesekera, A.; Jones, B. E.; Ducharme, S.;
Takacs, J. M.; Zhang, L. Science 1994, 263, 367; (g) Miller, J. S. Adv. Mater. 1993,
5, 671; (h) Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.;
Holmes, A. B. Nature 1993, 365, 628; (i) Nalwa, H. S. Adv. Mater. 1993, 5, 341; (j)
Buckley, A. Adv. Mater. 1992, 4, 153.
11. (a) Michinobu, T.; Boudon, C.; Gisselbrecht, J. P.; Seiler, P.; Frank, B.; Moonen, N.
N. P.; Gross, M.; Diederich, F. Chem. Eur. J. 2006, 12, 1889; (b) Pahadi, N. K.;
Camacho, D. H.; Nakamura, I.; Yamamoto, Y. J. Org. Chem. 2006, 71, 1152; (c)
Michinobu, T.; May, J. C.; Lim, J. H.; Boudon, C.; Gisselbrecht, J. P.; Seiler, P.;
Gross, M.; Biaggio, I.; Diederich, F. Chem. Commun. 2005, 737.
Containing both a conjugated diene structural unit and a homo-
allylic structural unit, 4 might be of potential value in organic syn-
thesis.7,8 Moreover, the functional groups on 2- or 6-position of 4
allowed it to be easily transformed to some other useful skeletons
(Scheme 3). For example, the Sonogashira coupling9 of 4a with al-
kyne would give the alkynyl-substituted conjugated diene 6 in
good yield. Compound 7 was generated through nucleophilic sub-
stitution of 4a in the presence of NaBH4 and (PhSe)2, and could fur-
ther occur Suzuki coupling to give 8 in 74% yield. All of these
analogs are important organic compounds in part due to their
applications in Diels–Alder reactions and exploration of materials
for electronic and photonic applications,10 and in part due to their
existence in many chromophores as a substructure.11
In conclusion, we reported the difunctional additions of 1-
cyclopropylallenes. The selectivity of this reaction was good and
two different functional groups could be introduced at the same
time. This would provide an efficient and stereospecific method
for the synthesis of 2,6-difunctional-1,3-hexadienes.12 Further
investigations on 1-cyclopropylallenes are being undertaken in
our laboratory.
12. Typical procedure of Synthesis of 2,6-dihalo-1,3-hexadienes 4: In a Schlenk tube,
0.3 mmol of 1 was dissolved in 2 mL of THF under nitrogen atmosphere. Then,
0.3 mmol of NXS and MY (metal halides) were added. The mixture was stirred
at room temperature and the reaction was monitored by TLC (eluent:
petroleum ether). When the reaction terminated, the solvent was evaporated
under vacuum, and the residue was isolated by preparation TLC (eluent:
petroleum ether) to give the corresponding product 4. Selected spectroscopic
data of compound 4a: Oil. IR (film): 3023, 2959, 1603, 1445, 1105, 965, 761,
694 cmÀ1
.
1H NMR (400 MHz, CDCl3, TMS): d 7.41 (d, J = 6.8 Hz, 2H), 7.30–7.35
(m, 3H), 6.22 (s, 1H), 6.19 (s, 1H), 5.87 (t, J = 7.2 Hz, 1H), 3.47 (t, J = 6.8 Hz, 2H),
2.84 (q, J = 6.8 Hz, 2H). 13C NMR (100 MHz, CDCl3): d 31.3, 32.8, 102.6, 125.5,
126.6, 128.1, 128.4, 130.7, 137.3, 146.3. MS (EI, 70 eV): m/z (%) 362 (25) [M+],
156 (100). HRMS (EI): m/z calcd for C12H12BrI: 361.9167; found: 361.9165.
Selected spectroscopic data of compound 5a: Oil. IR (film): 2973, 2864, 1604,
1446, 1375, 1109, 907, 763 cmÀ1 1H NMR (400 MHz, CDCl3, TMS): d 7.44–7.45
.
Acknowledgments
(m, 2H), 7.31–7.38 (m, 3H), 6.25 (s, 1H), 6.22 (s, 1H), 5.96 (t, J = 7.2 Hz, 1H),
3.51–3.59 (m, 4H), 2.59 (t, J = 7.2 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H). 13C NMR
(100 MHz, CDCl3): d 15.2, 30.6, 66.2, 69.3, 103.2, 125.9, 126.6, 127.8, 128.3,
130.5, 137.8, 145.3. MS (EI, 70 eV): m/z (%) 328 (7) [M+], 115 (100). HRMS (EI):
We are grateful to the National Natural Science Foundation of
China (Project Nos. 20732005 and 20872127), National Basic