a norbene fragment with the corresponding syn stereo-
chemistry. Such a fragment would be unable to coordinate
to the metal in the manner found. By contrast, reaction
of nickelocene with the activated alkenes methylketene or
tetrafluoroethylene results in [2 + 2] cycloaddition not
[4 + 2] cycloaddition.18 The reactivity found for these
platinum systems suggests that group 10 metal mediated
addition may provide a solution to the long sought goal of
facial selectivity in Diels–Alder addition reactions to cyclic
systems.
1 H.-W. Fruhauf, Chem. Rev., 1997, 97, 523–564; C. A. Merlic and
¨
H. D. Bendorf, Organometallics, 1993, 12, 559–564.
2 M. Dubeck, J. Am. Chem. Soc., 1960, 82, 6193; L. F. Dahl and
C.-H. Wei, Inorg. Chem., 1963, 2, 713–721.
3 A. S. Cieplak, Chem. Rev., 1999, 99, 1265–1336; G. Mehta and
R. Uma, Acc. Chem. Res., 2000, 33, 278–286.
4 N. M. Boag, R. Quyoum and K. M. Rao, J. Chem. Soc., Chem.
Commun., 1992, 114–115.
5 N. M. Boag, Organometallics, 1989, 7, 1446–1449.
6 The Chemistry of Peroxides, ed. Z. Rappoport, John Wiley & Sons,
Chichester, 2006.
7 Comprehensive Organometallic Chemistry, ed. G. Wilkinson,
F. G. A. Stone and E. W. Abel, Pergamon Press, Oxford, 1982,
vol. 6.
8 H. Kojima, S. Takahashi and N. Hagihara, J. Chem. Soc., Chem.
Commun., 1973, 230–231; N. A. Vol’kenau and V. A. Petrakova,
J. Organomet. Chem., 1982, 233, C7–C12; J. R. Hamon and
D. Astruc, Organometallics, 1988, 7, 1036–1046.
9 J. Jeffery, R. J. Mawby, M. B. Hursthouse and N. P. C. Walker,
J. Chem. Soc., Chem. Commun., 1982, 1411–1412.
Notes and references
y The species 1 were obtained from the hexane mediated reaction of
Pt(Z5-C5Me5)(CO)I with the appropriate phosphine. Pt(Z5-C5Me5)(CO)I
was prepared by reaction of Pt2(Z5-C5Me5)2(CO)2 with I2 at ꢁ116 1C
(ether slush).5
10 J. R. Bleeke, Y. F. Xie, L. Bass and M. Y. Chiang, J. Am. Chem.
Soc., 1991, 113, 4703–4704.
z Spectroscopic data for 2b: 1H NMR (CD2Cl2) d 7.5–7.4 (m 5H, Ph),
2.8–1.0 (m 22H, Cy), 1.97 (d, 6H, Me, JPH = 3.0 Hz, JPtH = 27.7 Hz),
1.34 (s, 6H, Me), 0.39 (d, 3H, Me, JPH = 0.9 Hz, JPtH = 61.5 Hz);
selected 13C{1H} (CD2Cl2) d 113.2 (d, 2C, QCMe, JPC = 13 Hz,
JPtC = 78 Hz), 95.9 (d, 2C, C(O)Me, JPC = 4 Hz, JPtC = 69 Hz), 42.0
(s, 1C, CMe, JPtC = 503 Hz), 13.3 (br s, 2C, Me, JPtC = 11 Hz), 10.7
(s, 2C, Me, JPtC = 17 Hz), 9.1 (s, 1C, Me, JPC = 4 Hz); 195Pt{1H}
(C6D6, X = 21.4), d 444 (d, JPtP = 4461 Hz); 31P{1H}(C6D6) d 28.3
(s, JPtP = 4459 Hz).
11 W. M. Cleaver and A. R. Barron, J. Am. Chem. Soc.,
1989, 111, 8966–8967; R. Han and G. Parkin, J. Am. Chem.
Soc., 1990, 112, 3662–3663; J. M. Keith, R. J. Nielsen,
J. Oxgaard and W. A. Goddard III, J. Am. Chem. Soc., 2005,
127, 13172–13179.
12 G. Parkin and J. E. Bercaw, J. Am. Chem. Soc., 1989, 111,
391–393; G. Parkin, R. E. Marsh, W. P. Schaefer and
J. E. Bercaw, Inorg. Chem., 1988, 27, 3262–3264; F. Bottomley,
C. P. Magill and B. Zhao, Organometallics, 1991, 10, 1946–1954;
V. W. Day, W. G. Klemperer, S. P. Lockledge and D. J. Main,
J. Am. Chem. Soc., 1990, 112, 2031–2033.
13 K. M. Rao, C. L. Day, R. A. Jacobson and R. J. Angelici,
Organometallics, 1992, 11, 2303–2304; L. Fan, M. L. Turner,
M. B. Hursthouse, K. M. A. Malik, O. V. Gusev and
P. M. Maitlis, J. Am. Chem. Soc., 1994, 116, 385–386.
14 W.-T. Gong, G.-L. Ning, X.-C. Li, L. Wang and Y. Lin, J. Org.
Chem., 2005, 70, 5768–5770.
8 Crystal data for 2b: C28H42IO2PPt, M = 763.58, monoclinic, a =
9.954(3), b = 11.961(4), c = 12.053(5) A, b = 93.41(3)1, U =
1432.5(8) A3, T = 203(2) K, space group P21, Z = 2, 3645 reflections
measured, 3455 unique (Rint = 0.0480); reflections with I 4 2s(I) =
2440, R1 = 0.063 (I 4 2s(I)), wR2 = 0.142 (all data), GOF = 1.039.
** Spectroscopic data for 3b (major isomer): selected 1H NMR (C6D6)
d 1.98 (d, 3H, Me, JPH = 3.3 Hz, JPtH = 30.8 Hz) 1.81 (d, 3H, Me,
JPH = 3.2 Hz, JPtH = 36.6 Hz), 1.47 (s, 3H, Me), 1.33 (s, 3H, Me),
ꢁ0.19 (d, 3H, Me, JPH = 1.3 Hz, JPtH = 64.0 Hz); selected 13C{1H}
(CD2Cl2) d 173.4 (s, 1C, C(O)), 113.8 (d, 1C, QCMe, JPC = 15 Hz,
JPtC = 68 Hz), 110.0 (d, 1C, CMe, JPC = 13 Hz, JPtC = 73 Hz), 67.4
(s, 1C, CMe, JPtC = 84 Hz), 63.2 (s, 1C, CMe, JPtC = 88 Hz), 52.6
(s, 1C, CH2, JPtC = 111 Hz), 51.2 (s, 1C, CO2Me), 39.9 (s, 1C, CH2,
JPtC = 110 Hz), 36.6 (s, 1C, CMe, JPtC = 468 Hz), 15.5 (d, 1C, Me,
JPC = 2 Hz, JPtC = 17 Hz), 15.2 (s, 1C, Me, JPtC = 34 Hz), 14.4 (s, 1C,
Me, JPtC = 32 Hz), 13.5 (d, 1C, Me, JPC = 3 Hz, JPtC = 17 Hz), 8.9
(d, 1C, Me, JPC = 6 Hz); 195Pt{1H} (C6D6, X = 21.4), d 719
(d, JPtP = 4587 Hz); 31P{1H}(C6D6) d 19.9 (s, JPtP = 4588 Hz).
ww Crystal data for 3c: C28H42IO2PPt, M = 803.59, a = 9.490(3), b =
15.263(4), c = 21.282(7) A, b = 92.55(2)1, U = 3079.5(15) A3, T =
293(2) K, space group monoclinic, P21/c, Z = 4, 7499 reflections
measured, 7094 unique (Rint = 0.0314); reflections with I 4 2s(I) =
4258, R1 = 0.049 (I 4 2s(I)), wR2 = 0.115 (all data), GOF = 1.053.
15 W. Adam, U. Jacob and M. Prein, J. Chem. Soc., Chem. Commun.,
1995, 839–840.
16 F. Najjar, C. Andre-Barres, R. Lauricella, L. Gorrichon and
B. Tuccio, Tetrahedron Lett., 2005, 46, 2117–2119; A. R. Reddy
and M. Bendikov, Chem. Commun., 2006, 1179–1181;
P. D. Bartlett and R. Banavali, J. Org. Chem., 1991, 56,
6043–6050; D. H. R. Barton, R. K. Haynes, G. Leclerc,
P. D. Magnus and I. D. Menzies, J. Chem. Soc., Perkin Trans. 1,
1975, 2055–2065.
17 P. L. Holland, M. E. Smith, R. A. Andersen and R. G. Bergman,
J. Am. Chem. Soc., 1997, 119, 12815–12823.
18 D. A. Young, J. Organomet. Chem., 1974, 70, 95–99;
D. W. McBride, R. L. Pruett, E. Pitcher and F. G. A. Stone,
J. Am. Chem. Soc., 1962, 84, 497–499.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 1499–1501 | 1501