1990
E. Dalkılıç et al. / Tetrahedron Letters 50 (2009) 1989–1991
n
-BuLi,
t
-BuOK,
X
X
X
X
SnMe3
X
X
X
X
Br
Br
BrCH2CH2Br
n
-BuLi, Me3SnCl
THF
SnMe3
Br
CuTC
NMP
X
X
X
X
X
X
THF
+
Br
10
(95% yield)
8
9
(55% yield)
14, 15
Scheme 1. Synthesis of the stannylated precursor of cyclopentadiene 7.
MeOOC
COOMe
16: X-X =
(24% yield, 1:9 syn to anti)
N
N
17: X-X =
(4% yield, only anti)
O
O
COOMe
N
Ph
N
N
N
N
COOMe
COOMe
Scheme 4. Copper-mediated reactions leading to benzocyclotrimers.
SnMe3
Br
SnMe3
Br
N
N
N
N
COOMe
N
10
N
acting on the plane of the ethylidene fragment of the bicycle.17
More striking is the effect of the endo-cycloadduct of PTAD 15: in
this case, the sole anti-cyclotrimer 17 was obtained.
- N2
COOMe
COOMe
12
11
In conclusion, we proposed an original and versatile protocol for
the preparation of highly functionalized precursors of benzocyclo-
trimers. These compounds were submitted to standard procedure
for the cyclotrimerization, affording two original functionalized
benzocyclotrimers, which will be further investigated as supramo-
lecular scaffolds.
COOMe
25 °C
retro-Diels-Alder
SnMe3
Br
N
N
+
12
7
COOMe
13
Acknowledgments
Scheme 2. Tetrazine route leading to cyclopentadiene 7.
The authors are indebted to the Scientific and Technical Re-
search Council of Turkey (TUBITAK) and to Centro Nazionale Ricer-
che (CNR) (joined project No.: TBAG-107T874) for financial
supports. This work also was supported by the Turkish Academy
of Sciences, in the framework of the Young Scientist Award Pro-
gram (AD/TUBA-GEBIP/2001-1-3), Atatürk University, and Middle
East Technical University in Turkey and in Italy by MIUR (Rome)
within the national PRIN framework in Italy.
The protocol starts with the synthesis of the 2,3-dibromobicy-
clo[2.2.1]hepta-2,5-diene 9 from commercially available norborna-
diene 8, according to reported procedures based on the use of
potassium tert-butanolate/n-butyllithium super-base.10 The tri-
methyltin moiety is introduced at this stage, via a metal-halogen
exchange operated with n-butyllithium at À78 °C (Scheme 1).6b
The resulting vic-bromo(trimethyltin)norbornadiene 10 is
submitted to cycloaddition with dimethyl 1,2,4,5-tetrazine-3,6-
dicarboxylate,11 to afford cycloadduct 11 that undergoes facile
retro-Diels–Alder with loss of nitrogen to furnish intermediate 12
(Scheme 2).12 A second retro-Diels–Alder reaction spontaneously
occurs affording pyridazine 13 and substituted cyclopentadiene 7
which can be easily isolated.13
References and notes
1. Rieth, S.; Yan, Z.; Xia, S.; Gardlik, M.; Chow, A.; Fraenkel, G.; Hadad, C. M.;
Badjic´, J. D. J. Org. Chem. 2008, 73, 5100–5109; Yan, Z.; McCracken, T.; Xia, S.;
´
Maslak, V.; Gallucci, J.; Hadad, C. M.; Badjic, J. D. J. Org. Chem. 2008, 73, 355–
363; Yan, Z.; Xia, S.; Gardlik, M.; Seo, W.; Maslak, V.; Gallucci, J.; Hadad, C. M.;
Cyclopentadiene 7 cannot be stored for a prolonged time; there-
fore, after rapid isolation it is reacted with electron-poor olefins at
room temperature. The cycloaddition is generally smooth and exo-
thermic, furnishing the expected cycloadducts in a few hours
(Scheme 3).14
The PTAD cycloadduct 15 is crystalline and it is readily purified
by fractional crystallization, alternatively product 14 is isolated
after a fast filtration on a short silica-gel pad.15
Cyclotrimers 16 and 17 were obtained after reaction with CuTC
in dry NMP at À20 °C (Scheme 4).16 The syn to anti diastereoselec-
tivity and the yields of the products strictly reflect the steric hin-
drance of the substituents. In detail, 14 furnished a 1:9 syn to
anti mixture of 16: this unfavorable diastereomeric ratio is imput-
able to the steric repulsion between the carboxymethyl moieties
´
Badjic, J. D. Org. Lett. 2007, 9, 2301–2304; Maslak, V.; Yan, Z.; Xia, S.; Gallucci, J.;
´
Hadad, C. M.; Badjic, J. D. J. Am. Chem. Soc. 2006, 128, 5887–5894.
2. (a) Scarso, A.; Pellizzaro, L.; De Lucchi, O.; Linden, A.; Fabris, F. Angew. Chem.,
Int. Ed. 2007, 46, 4972–4975; (b) Fabris, F.; Pellizzaro, L.; Zonta, C.; De Lucchi, O.
Eur. J. Org. Chem. 2007, 283–291; (c) Zonta, C.; Cossu, S.; De Lucchi, O. Eur. J. Org.
Chem. 2000, 1965–1971.
3. Borsato, G.; De Lucchi, O.; Fabris, F.; Groppo, L.; Lucchini, V.; Zambon, A. J. Org.
Chem. 2002, 67, 7894–7897.
4. Borsato, G.; Brussolo, S.; Crisma, M.; De Lucchi, O.; Lucchini, V.; Zambon, A.
Synlett 2005, 1125–1128; De Lucchi, O.; Dasßtan, A.; Altundaßs, A.; Fabris, F.;
Balcı, M. Helv. Chim. Acta 2004, 87, 2364–2368; Dastan, A.; Uzundumlu, E.;
Balci, M.; Fabris, F.; De Lucchi, O. Eur. J. Org. Chem. 2004, 183–192; Dastan, A.;
Fabris, F.; De Lucchi, O.; Güney, M.; Balci, M. Helv. Chim. Acta 2003, 86, 3411–
3416; Borsato, G.; De Lucchi, O.; Fabris, F.; Lucchini, V.; Pasqualotti, M.;
Zambon, A. Tetrahedron Lett. 2003, 44, 561–563; Fabris, F.; Bellotto, L.; De
Lucchi, O. Tetrahedron Lett. 2003, 44, 1211–1213.
5. Higashibayashi, S.; Sakurai, H. J. Am. Chem. Soc. 2008, 130, 8592–8593; Amaya,
T.; Sakane, H.; Hirao, T. Angew. Chem., Int. Ed. 2007, 46, 8376–8379;
Higashibayashi, S.; Sakurai, H. Chem. Lett. 2007, 36, 18–19; Zambrini, L.;
Fabris, F.; De Lucchi, O.; Gardenal, G.; Visentin, F.; Canovese, L. Tetrahedron
2001, 57, 8719–8724; Cossu, S.; De Lucchi, O.; Paulon, A.; Peluso, P.; Zonta, C.
Tetrahedron Lett. 2001, 42, 3515–3518.
6. (a) Zonta, C.; Cossu, S.; Peluso, P.; De Lucchi, O. Tetrahedron Lett. 1999, 40,
8185–8188; (b) Durr, R.; Cossu, S.; Lucchini, V.; De Lucchi, O. Angew. Chem., Int.
Ed. 1997, 36, 2805–2807.
7. Zavgorodnii, V. S.; Petrov, A. A. Zh. Obshch. Khim. 1966, 36, 1480–1483;
Zavgorodnii, V. S.; Petrov, A. A. J. Gen. Chem. USSR (Engl. Transl.) 1966, 36, 1485;
Zavgorodnii, V. S.; Petrov, A. A. Zh. Obshch. Khim. 1965, 35, 931–932; J. Gen.
Chem. USSR (Engl. Transl.) 1965, 35, 936.
8. Padovan, P.; Tartaggia, S.; Lorenzon, S.; Rosso, E.; Zonta, C.; De Lucchi O.; Fabris
F., Tetrahedron Lett. 2009, 50, 1973–1976.
9. Zonta, C.; Fabris, F.; De Lucchi, O. Org. Lett. 2005, 7, 1003–1006. This approach
was successfully used in the case of 3-bromo-4-trimethystannyl-1-
(tosyl)pyrrole.
SnMe3
PTAD
DMAD
Br
O
SnMe3
Br
MeOOC
MeOOC
SnMe3
Br
7
N
N
Ph
N
O
14
(70% yield)
15
(82% yield)
Scheme 3. Diels–Alder reactions leading to cyclotrimerization precursors.