Radiolysis Emission from Bis(phenylethynyl)benzenes
FIGURE 1. Chemical structures of bis(phenylethynyl)benzene derivatives (bPEBs). Arrows (i-iii) show three types of charge transfer conjugated
pathways in bPEBs.
give Bz radical cation (Bz• +) and formation of an electron (e-)
occur at the same time, followed by reaction with M to give
M• + and M• -, respectively. In our previous work, we have
proposed that the charge recombination of M• + and M• - gives
1M* and/or 1M2* as the emissive species for the organic
electrochemiluminescent molecules such as phenylquinolinyl-
ethynes,3aphenyl(9-acridinyl)ethynes,3bphenyl(9-cyanoanthracenyl)-
ethynes,3b,d arylethynylpyrenes,3c 9-cyano-10-(p-substituted
phenyl)anthracenes,3e and 1,2,4,5-tetrakis(arylethynyl)benzenes
(TAEBs).3f,g
For optoelectronic applications, organic compounds possess-
ing a high degree of π-conjugation with donor and/or acceptor
groups have been recognized as ideal materials.4-6 Changes in
the substituents and substitution pattern, electronic structure,
and conjugation can provide highly variable photophysical
properties for such materials. As a class of π-conjugated
molecules with remarkable optoelectronic properties, function-
alized phenylacetylene structures have received considerable
attention because of their characteristic conjugated pathways.6-8
In particular, 1,4-, 1,3-, and 1,2-bis(phenylethynyl)benzenes
(bPEBs ) na, nb, and nc) containing both donor and acceptor
functionality are an ideal class of molecules for studying the
differences between the linear- (path i), cross- (path ii), and
“bent”-conjugated (path iii) pathways to gain a better under-
standing of the geometric aspects of the charge-transfer path-
ways (Figure 1). By varying the substitution pattern of the donor-
or acceptor-substituted phenylacetylene group at the central
benzene ring, each charge-transfer pathway can be modified.
Therefore, the donor-acceptor-type bPEB structures can avoid
the complexity of the charge transfer pathways observed in
TAEB structures having two-donor and two-acceptor groups.
In addition, the HOMO-LUMO energy gaps of neutral 1a and
1c have been reported to be 7.043 and 6.874 eV, respectively,
which are much lower than that of 1b (7.338 eV).9 This feature
indicates that the emission wavelength of the bPEB structure
dramatically changes with the different types of branching.
Consequently, we can easily fine-tune the emission wavelength
and intensity by changing the various types of donor and
acceptor substituents and the substitution pattern of the central
arene. Some of these compounds are expected to be useful for
OLED materials because of the sufficiently large fluorescent
quantum yield (Φfl) and excess energy value (-∆H° - ES1)
(details are discussed below). In addition, bPEB structures can
rotate freely about their C-C single bonds,3f,g decreasing
π-orbital overlap, and thus formation of the face-to-face excimer
structure with less luminescence intensity cannot be expected.
The time-resolved transient absorption and emission measure-
ments during the pulse radiolysis of various bPEBs are useful
(4) (a) Goes, M.; Verhoeven, J. W.; Hofstraat, H.; Brunner, K. ChemPhy-
sChem 2003, 4, 349. (b) Thomas, K. R. J.; Lin, J. T.; Tao, Y.-T.; Chuen, C.-H.
Chem. Mater. 2002, 14, 3852. (c) Zhu, W.; Hu, M.; Yao, R.; Tian, H. J.
Photochem. Photobiol., A 2003, 154, 169. (d) Thomas, K. R. J.; Lin, J. T.;
Velusamy, M.; Tao, Y.-T.; Chuen, C.-H. AdV. Funct. Mater. 2004, 14, 83. (e)
Chiang, C.-L.; Wu, M.-F.; Dai, D.-C.; Wen, Y.-S.; Wang, J.-K.; Chen, C.-T.
AdV. Funct. Mater. 2005, 15, 231.
(5) (a) Elangovan, A.; Chen, T.-Y.; Chen, C.-Y.; Ho, T.-I. Chem. Commun.
2003, 2146. (b) Elangovan, A.; Yang, S.-W.; Lin, J.-H.; Kao, K.-M.; Ho, T.-I.
Org. Biomol. Chem. 2004, 2, 1597. (c) Elangovan, A.; Chiu, H.-H.; Yang, S.-
W.; Ho, T.-I. Org. Biomol. Chem. 2004, 2, 3113. (d) Elangovan, A.; Kao, K.-
M.; Yang, S.-W.; Chen, Y.-L.; Ho, T.-I.; Su, Y. O. J. Org. Chem. 2005, 70,
4460. (e) Yang, S.-W.; Elangovan, A.; Hwang, K.-C.; Ho, T.-I. J. Phys. Chem.
B 2005, 109, 16628. (f) Lin, J.-H.; Elangovan, A.; Ho, T.-I. J. Org. Chem. 2005,
70, 7397.
(6) (a) Jayakannan, M.; Van Hal, P. A.; Janssen, R. A. J. J. Polym. Sci.,
Part A: Polym. Chem. 2001, 40, 251. (b) Tykwinski, R. R.; Schreiber, M.; Carlon,
R. P.; Diederich, F.; Gramlich, V. HelV. Chim. Acta 1996, 79, 2249. (c)
Tykwinski, R. R.; Schreiber, M.; Gramlich, V.; Seiler, P.; Diederich, F. AdV.
Mater. 1996, 8, 226. (d) Wilson, J. N.; Hardcastle, K. I.; Josowicz, M.; Bunz,
U. H. F. Tetrahedron 2004, 60, 7157. (e) Wilson, J. N.; Smith, M. D.; Enkelmann,
V.; Bunz, U. H. F. Chem. Commun. 2004, 1700. (f) Wilson, J. N.; Josowicz,
M.; Wang, Y.; Bunz, U. H. F. Chem. Commun. 2003, 2962. (g) Miteva, T.;
Palmer, L.; Kloppenburg, L.; Neher, D.; Bunz, U. H. F. Macromolecules 2000,
33, 652. (h) J. Zucchero, A.; Wilson, J. N.; Bunz, U. H. F. J. Am. Chem. Soc.
2006, 128, 11872. (i) Ojima, J.; Kakumi, H.; Kitatani, K.; Wada, K.; Ejiri, E.;
Nakada, T. Can. J. Chem. 1984, 63, 2885. (j) Ojima, J.; Enkaku, M.; Uwai, C.
Bull. Chem. Soc. Jpn. 1977, 50, 933.
(7) (a) Miller, J. J.; Marsden, J. A.; Haley, M. M. Synlett 2004, 165. (b)
Marsden, J. A.; Miller, J. J.; Shirtcliff, L. D.; Haley, M. M. J. Am. Chem. Soc.
2005, 127, 2464. (c) Spitler, E. L.; Shirtcliff, L. D.; Haley, M. M. J. Org. Chem.
2007, 72, 86. (d) Spitler, E. L.; Monson, J. M.; Haley, M. M. J. Org. Chem.
2008, 73, 2211.
(8) (a) Marsden, J. A.; Palmer, G. J.; Haley, M. M. Eur. J. Org. Chem. 2003,
2355. (b) Jones, C. S.; O’Connor, M. J.; Haley, M. M. In Acetylene Chemistry:
Chemistry, Biology, and Materials Science; Diederich, F., Tykwinski, R. R.,
Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 303-385. (c)
Marsden, J. A.; Haley, M. M. J. Org. Chem. 2005, 70, 10213. (d) Anand, S.;
Varnavski, O.; Marsden, J. A.; Haley, M. M.; Schlegel, H. B.; Goodson, T., III.
J. Phys. Chem. A 2006, 110, 1305. (e) Bhaskar, A.; Guda, R.; Haley, M. M.;
Goodson, T., III. J. Am. Chem. Soc. 2006, 128, 13972. (f) Slepkov, A. D.;
Hegmann, F. A.; Tykwinski, R. R.; Kamada, K.; Ohta, K.; Marsden, J. A.; Spitler,
E. L.; Miller, J. J.; Haley, M. M. Opt. Lett. 2006, 31, 3315. (g) Spitler, E. L.;
McClintock, S. P.; Haley, M. M. J. Org. Chem. 2007, 72, 6692.
(9) Zhang, W.; Huang, C. Mater. Chem. Phys. 2006, 96, 283.
J. Org. Chem. Vol. 74, No. 10, 2009 3777