Notes and references
1 (a) J. M. Rini and N. Sharon, Curr. Opin. Struct. Biol., 2000, 10,
507; (b) R. Epweiler, H. Hermjakob and N. Sharon, Biochim.
Biophys. Acta, 1999, 1473, 4.
2 (a) T. Maeder, Sci. Am., 20027), 24; (b) R. A. Dwek, Chem. Rev.,
1996, 96, 683; (c) R. A. Dwek and T. D. Butters, Chem. Rev., 2002,
102, 283; (d) D. H. Dube and C. R. Bertozzi, Nat. Rev. Drug
Discovery, 2005, 4, 477.
3 (a) L. F. Leloir, Science, 1971, 172, 1299; (b) C. J. Thibodeaux,
C. E. Melancon and H. W. Liu, Nature, 2007, 446, 1008.
4 G. J. Davies, T. M. Gloster and B. Henrissat, Curr. Opin. Struct.
Biol., 2005, 15, 637.
5 H. J. M. Gijsen, L. Qiao, W. Fitz and C. H. Wong, Chem. Rev.,
1996, 96, 443.
6 (a) R. Chang, T. T. Vo and N. S. Finney, Carbohydr. Res., 2006,
341, 1998; (b) J. Hajduch, G. Nam, E. J. Kim, R. Frohlich,
J. A. Hanover and K. K. Kirk, Carbohydr. Res., 2008, 343, 189;
(c) R. R. Schmidt and K. Frische, Bioorg. Med. Chem. Lett., 1993,
3, 1747; (d) B. Muller, C. Schaub and R. R. Schmidt, Angew.
Chem., Int. Ed., 1998, 37, 2893.
7 (a) S. Cai, M. R. Stroud, S. Hakomori and T. Toyokuni, J. Org.
Chem., 1992, 57, 6693; (b) A. J. Norris, J. P. Whitelegge,
M. J. Strouse, K. F. Faull and T. Toyokuni, Bioorg. Med. Chem.
Lett., 2004, 14, 571; (c) H. Yuasa, M. M. Palcic and O. Hindsgaul,
Can. J. Chem., 1995, 73, 2190.
8 (a) J. E. Heidlas, W. J. Lees, P. Pale and G. M. Whitesides, J. Org.
Chem., 1992, 57, 146; (b) J. E. Heidlas, K. W. Williams and
G. M. Whitesides, Acc. Chem. Res., 1992, 25, 307; (c) J. Bae,
K.-H. Kim, D. Kim, Y. Choi, J. S. Kim, S. Koh, S.-I. Hong and
D.-S. Lee, ChemBioChem, 2005, 6, 1963.
9 S. H. Yu, J. J. Park and S. K. Chung, Tetrahedron: Asymmetry,
2006, 17, 3030.
10 J. Smallshaw and R. A. Kellin, Genetics (Life Sci. Adv.), 1992, 11,
59.
11 A. Matsuyama and H. Nakano, J. Bacteriol., 1989, 171, 577.
12 S. A. Hossain, K. Tanizawa, Y. Kazuta and T. Fukui, J. Biochem.,
1994, 115, 965.
Scheme 4 One-pot enzymatic synthesis of GDP-carba-Man. ACK
(acetate kinase), GMK (GMP kinase), ManC (mannose-1-phosphate
guanylyltransferase).
opening of the 1,2-b-epoxide with allyl alcohol and BF3
etherate in CH2Cl2 exclusively gave the carba-a-D-mannose
derivative 9. Benzyl protection of 9 followed by removal of the
allyl group with PdCl2 and NaOAc in aqueous AcOH
provided the 1-hydroxyl intermediate, which was phosphorylated
and the protecting groups were removed as previously
described to give desired carba-a-D-mannose-1-phosphate 10.
(Scheme S3 of ESIz). The enzymatic transformation of 10 to
GDP-carba-Man 3 proceeded uneventfully as shown in
Scheme 4. For the enzymatic NDP coupling reaction to obtain
GDP-carba-Man (3: 192 mg, 83% from GMP), we again
employed a GTP regenerating system based on two enzymes
(acetate kinase and GMP kinase20), and mannose-1-phosphate
guanylyltransferase.21
13 S. W. Chung, K. S. Jang, H. J. Lee, S. G. Lee and B. G. Kim,
Enzyme Microb. Technol., 2006, 39, 60.
14 S. H. Yu and S. K. Chung, Tetrahedron: Asymmetry, 2004, 15, 581.
15 D. Mengin-Lecreulx and H. J. van Heijenoort, J. Bacteriol., 1993,
175, 6150.
16 (a) R. J. Konrad, F. Zhang, J. E. Hale, M. D. Knierman,
G. W. Becker and J. E. Kudlow, Biochem. Biophys. Res. Commun.,
2002, 293, 207; (b) B. J. Gross, B. C. Kraybill and S. Walker,
J. Am. Chem. Soc., 2005, 127, 14588. The details of the inhibition
studies will be reported in due course.
17 S. H. Yu and S. K. Chung, Tetrahedron: Asymmetry, 2005, 16,
2729.
18 (a) P. J. Garegg and B. Samuelsson, Synthesis, 1979, 469;
(b) S. K. Chung and Y. U. Kwon, Bioorg. Med. Chem. Lett.,
1999, 9, 2135; (c) Y. U. Kwon, C. G. Lee and S. K. Chung, J. Org.
Chem., 2002, 67, 3327.
In summary, we have successfully demonstrated chemoenzy-
matic syntheses of several NDP-carba-sugar analogues, which
are based on readily available sugar-1-phosphate nucleotide
transferase enzymes coupled with nucleotide trisphosphate
regenerating systems. To the best of our knowledge, this
represents the first chemoenzymatic synthesis of the
NDP-carba-sugar analogues including UDP-carba-Gal,
UDP-carba-GlcNAc, UDP-carba-Glc, and GDP-carba-Man.
The chemoenzymatic strategy should be readily applicable to
the preparation of other NDP-carbasugars, provided that the
carbasugar analogues are available.8,14,17 Furthermore, we
envisage that these NDP-carba-sugar analogues may poten-
tially be selective inhibitors of various glycosyltransferases
utilizing these NDP-sugars as requisite cofactors. However,
these NDP-carba-sugars are highly water soluble and not
readily taken up by cells, thus limiting their in vivo utilities.
It will be useful to develop membrane permeable versions of
the NDP-carba-sugar analogues for wider applications, and
we are currently working toward this goal by utilizing novel
molecular transporters recently developed in our laboratory.22
This work was supported by KISTEP/KOSEF
(BT-Glycobiology Program 200402087) and the Korea
Research Foundation (MOEHRD KRF-2005-070-C00078).
19 (a) H. C. Kolb and K. B. Sharpless, Tetrahedron, 1992, 48, 10515;
(b) S. K. Balani, I. N. Brannigan, D. R. Boyd, N. D. Sharma,
F. Hempenstall and A. Smith, J. Chem. Soc., Perkin Trans. 1, 2001,
1091.
20 M. P. Oeschger and M. J. Bessman, J. Biol. Chem., 1966, 241, 5452.
21 L. Elling, J. E. Ritter and S. Verseck, Glycobiology, 1996, 6, 591.
22 (a) K. K. Maiti, O. Y. Jeon, W. S. Lee, D. C. Kim, K. T. Kim,
T. Takeuchi, S. Futaki and S. K. Chung, Angew. Chem., Int. Ed.,
2006, 45, 2907; (b) K. K. Maiti, W. S. Lee, T. Takeuchi,
C. Watkins, M. Fretz, D. C. Kim, S. Futaki, A. Jones,
K. T. Kim and S. K. Chung, Angew. Chem., Int. Ed., 2007, 46,
5880; (c) G. Biswas, O. Y. Jeon, W. S. Lee, D. C. Kim, K. T. Kim,
S. Lee, S. Chang and S. K. Chung, Chem.–Eur. J., 2008, 14, 9161.
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 1733–1735 | 1735