Organic Letters
Letter
(4) Bhambra, A. S.; Edgar, M.; Elsegood, M. R. J.; Li, Y.; Weaver, G. W.;
Arroo, R. R. J.; Yardley, V.; Burrell-Saward, H.; Krystof, V. Eur. J. Med.
Chem. 2016, 108, 347.
Scheme 6. Proposed Mechanism
(5) Romagnoli, R.; Baraldi, P. G.; Cara, C. L.; Hamel, E.; Basso, G.;
Bortolozzi, R.; Viola, G. Eur. J. Med. Chem. 2010, 45, 5781.
(6) (a) Stroba, A.; Schaeffer, F.; Hindie, V.; Lopez-Garcia, L.; Adrian,
I.; Froehner, W.; Hartmann, R. W.; Biondi, R. M.; Engel, M. J. Med.
Chem. 2009, 52, 4683. (b) Lindenschmidt, C.; Krane, D.; Vortherms, S.;
Hilbig, L.; Prinz, H.; Mueller, K. Eur. J. Med. Chem. 2016, 110, 280.
(7) (a) Kantam, M. L.; Ranganath, K. V. S.; Sateesh, M.; Kumar, K. B.
S.; Choudary, B. M. J. Mol. Catal. A: Chem. 2005, 225, 15. (b) Morizur,
V.; Hector, D.; Olivero, S.; Desmurs, J. R.; Dunach, E. Eur. J. Org. Chem.
2016, 2016, 3126. (c) Pal, S.; Khan, M. A.; Bindu, P.; Dubey, P. K.
Beilstein J. Org. Chem. 2007, 3, 35.
(8) (a) Ushijima, S.; Dohi, S.; Moriyama, K.; Togo, H. Tetrahedron
2012, 68, 1436. (b) Pouzet, P.; Erdelmeier, I.; Dansette, P. M.; Mansuy,
D. Tetrahedron 1998, 54, 14811.
(9) (a) Chan, S. L.-F.; Low, K.-H.; Yang, C.; Cheung, S. H.-F.; Che, C.-
M. Chem. - Eur. J. 2011, 17, 4709. (b) Debray, J.; Lemaire, M.;
Popowycz, F. Synlett 2013, 24, 37.
(10) (a) Yasuike, S.; Nakata, K.; Qin, W.; Matsumura, M.; Kakusawa,
N.; Kurita, J. J. Organomet. Chem. 2015, 788, 9. (b) Kuriyama, M.;
Hamaguchi, N.; Sakata, K.; Onomura, O. Eur. J. Org. Chem. 2013, 2013,
3378. (c) Meng, G.; Szostak, M. Org. Biomol. Chem. 2016, 14, 5690.
(11) Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y. Chem. - Eur. J. 2015,
21, 13191.
(12) Selected references: (a) Liwosz, T. W.; Chemler, S. R. Org. Lett.
2013, 15, 3034. (b) Faulkner, A.; Race, N. J.; Scott, J. S.; Bower, J. F.
Chem. Sci. 2014, 5, 2416.
(13) (a) Prasad, D. J. C.; Naidu, A. N.; Sekar, G. Tetrahedron Lett. 2009,
50, 1411. (b) Prasad, D. J. C.; Sekar, G. Org. Lett. 2011, 13, 1008.
(c) Prasad, D. J. C.; Sekar, G. Org. Biomol. Chem. 2013, 11, 1659.
(d) Sangeetha, S.; Muthupandi, P.; Sekar, G. Org. Lett. 2015, 17, 6006.
(14) Knochel et al. reported functionalized benzothiophene synthesis
using copper catalyst. However, 2-acylbenzothiophene has been
synthesized in five steps starting from commercially available 1,2-
dihalobenzene with acyl chloride as acyl source: Kunz, T.; Knochel, P.
Angew. Chem., Int. Ed. 2012, 51, 1958.
as a sulfur surrogate. The methodology proceeds via in situ sulfur
incorporation followed by cyclization to generate 2-acylbenzo-
thiophenes without external acyl source. Compounds with
various substituents including halogen derivatives of 2-
acylbenzothiophene can be synthesized, which shows the
robustness of the method. The synthetic application of this
method was also showcased by synthesizing 1-(5-hydroxybenzo-
thiophene-2-yl)ethanone, which is known as a pre-mRNA
splicing modulator.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(15) 12% of compound 8a with its trace isomer (Scheme 5b) was
isolated along with 2a.
Detailed experimental procedures, characterization data,
(16) This product might have formed by an SNAr mechanism. When
the ketone analogue of 1a was used (3-(2-iodophenyl)-1-phenyl-
propane-1-one) under the optimized reaction conditions, it did not give
product 2a, which supports formation of a trace amount of 2a with 1a by
an SNAr mechanism in the absence of Cu catalyst.
(17) Liu, Z.-y.; He, X.-b.; Yang, Z.-y.; Shao, H.-y.; Li, X.; Guo, H.-f.;
Zhang, Y.-q.; Si, S.-y.; Li, Z.-r. Bioorg. Med. Chem. Lett. 2009, 19, 4167.
(18) (a) Wrobel, J. E.; Dietrich, A. J.; Li, Z. US6110962A, 2000.
(b) Shrestha, S.; Hwang, S. Y.; Lee, K.-H.; Cho, H. Bull. Korean Chem.
Soc. 2005, 26, 1138. (c) Schmitt, C.; Miralinaghi, P.; Mariano, M.;
Hartmann, R. W.; Engel, M. ACS Med. Chem. Lett. 2014, 5, 963.
(19) 5% yield for acetophenone was obtained (calculated by 1H
NMR).
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(20) The expected structure of 7o is
We thank the DST New Delhi (Project No. SB/S1/OC-72/
2013) for financial support. S.S. thanks IIT Madras for a
fellowship.
REFERENCES
■
(1) (a) Scrowston, R. M. Adv. Heterocycl. Chem. 1981, 29, 171.
(b) Hari, D. P.; Hering, T.; Koenig, B. Org. Lett. 2012, 14, 5334. (c) Sun,
L.-L.; Deng, C.-L.; Tang, R.-Y.; Zhang, X.-G. J. Org. Chem. 2011, 76,
7546.
(21) The controlled reactions were carried out using TEMPO (2,2,6,6-
tetramethylpiperidin-1-yl)oxidanyl and BHT (2,6-di-tert-butyl-4-meth-
ylphenol) under the optimized reaction conditions. However, no change
in the yield was found in either case.
(2) Romagnoli, R.; Baraldi, P. G.; Lopez-Cara, C.; Preti, D.; Aghazadeh
Tabrizi, M.; Balzarini, J.; Bassetto, M.; Brancale, A.; Fu, X.-H.; Gao, Y.;
Li, J.; Zhang, S.-Z.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. J. Med.
Chem. 2013, 56, 9296.
(3) Miralinaghi, P.; Schmitt, C.; Hartmann, R. W.; Frotscher, M.;
Engel, M. ChemMedChem 2014, 9, 2294.
D
Org. Lett. XXXX, XXX, XXX−XXX