Modular Synthesis of Polybenzo[b]silole Compounds
The single crystal X-ray diffraction study was carried out on a Rigaku
MERCURY CCD system. Single crystals were obtained by slowly cool-
ing a solution of 3 in hexane/chloroform (9:1).
b) A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, Chem.
[7] a) U. Salzner, J. B. Lagowski, P. G. Pickup, R. A. Poirier, Synth. Met.
c) H. Murata, G. G. Malliaras, M. Uchida, Y. Shen. Z. H. Kafafi,
Differential scanning calorimetry was performed on a NETZSCH ther-
mal analyzer (DSC 204/F1). An amorphous sample was obtained by fast
cooling of the melt of benzosiloles 3–6, and the obtained sample was
heated at
a a flow rate of
rate of 10 KminÀ1 under N2 gas, at
18 mLminÀ1
.
[8] a) M. Nakamura, L. Ilies, S. Otsubo, E. Nakamura, Angew. Chem.
2803–2805; c) H. Tsuji, K. Sato, L. Ilies, Y. Itoh, Y. Sato, E. Naka-
[9] a) H. Tsuji, C. Mitsui, L. Ilies, Y. Sato, E. Nakamura, J. Am. Chem.
[10] For example: M. Uchida, T. Izumizawa, T. Nakano, S. Yamaguchi,
[11] For utilization of stereogenic centers in a molecule to stabilize the
amorphous state, see reference [8c].
[12] a) M. Ichikawa, T. Kawaguchi, K. Kobayashi, T. Miki, K. Furukawa,
Ichikawa, S. Fujimoto, Y. Miyazawa, T. Koyama, N. Yokoyama, T.
Miki, Y. Taniguchi, Org. Electron. 2008, 9, 77–84; c) M. Uchida, T.
Izumizawa, T. Nakano, S. Yamaguchi, K. Tamao, K. Furukawa,
The time-of-flight measurements were performed at Sumitomo Heavy In-
dustries Advanced Machinery, TOF-401. Films were deposited on ITO-
coated (145 nm) glass substrates. The vacuum deposition was performed
at ULVAC KIKO (VPC-260). The films were deposited by vacuum subli-
mation at 1ꢁ10À3 Pa, with an average deposition rate of 20–30 nmsÀ1
.
The ITO-coated glass substrate was spaced at 100 mm from the sample
and was kept at 258C. The thickness of the films obtained was 3–5 mm.
All calculations were performed using the Gaussian 03 program.[17] The
geometries of benzosiloles were optimized at the B3LYP/6-31G* level.
The triplet energy levels were determined by TD-DFT calculations at the
B3LYP/6-31G* level, utilizing the optimized geometries.
For the device fabrication and evaluation, compounds 3–6 of analytical
purity were further purified by train sublimation. All of the other materi-
als were commercially available and were used as purchased. An ITO-
coated glass substrate treated by O3-plasma was used as the anode. A
PEDOT:PSS water dispersion was spin-coated into this substrate, it was
dried at 1208C, then it was annealed at 1808C under nitrogen. All layers
were sequentially vacuum deposited into this substrate at a pressure of
2ꢁ10À4 Pa or less. Finally, the device was sealed by encapsulation with
fresh desiccant under nitrogen. The emissive area of the device was 2ꢁ
2 mm2.
[13] Triazine-based materials: a) H. Inomata, K. Goushi, T. Masuko, T.
Konno, T. Imai, H. Sasabe, J. J. Brown, C. Adachi, Chem. Mater.
Device structure: glass/ITO (145 nm)/PEDOT:PSS (30 nm)/a-NPD
(45 nm)/CBP:Ir
ACHTUNGTRENNUNG(ppy)3 (4 wt%) (30 nm)/3–6 or BCP (10 nm)/Alq3
(20 nm)/Liq (1 nm)/Al (80 nm).
[14] For example: a) J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong,
15, 1535–1546; b) G. Yu, S. Yin, Y. Liu, J. Chen, X. Xu, X. Sun, D.
Ma, X. Zhan, Q. Peng, Z. Shuai, B. Tang, D. Zhu, W. Fang, Y. Luo,
[15] a) M. A. Lampert, P. Mark, Current Injection in Solids, Academic
Press, New York, 1970; b) Photoconductivity and Related Phenom-
ena (Eds.: J. Mort, D. M. Pai), Elsevier, New York, 1976.
Acknowledgements
We thank MEXT (KAKENHI for E.N., No. 18105004 and for H.T., No.
20685005) and the Global COE Program for Chemistry Innovation. L.I.
and C.M. thank the Research Fellowship of the Japan Society for the
Promotion of Science for Young Scientists (No. 19·10183 and 21·9262, re-
spectively).
[16] G. G. Malliaras, Y. Shen, D. H. Dunlap, H. Murata, Z. H. Kafafi,
[1] a) Organic Light-Emitting Devices. Synthesis Properties and Applica-
tions (Eds.: K. Mꢂllen, U. Scherf), Wiley-VCH, Weinheim, 2006;
[17] Gaussian 03, Revision B.05, M. J. Frisch, G. W. Trucks, H. B. Schle-
gel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgom-
ery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,
N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.
Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O.
Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Fores-
man, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski,
B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Na-
nayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh,
PA, 2003.
b) Organic Light-Emitting Devices.
A Survey (Ed.: J. Shinar),
Springer, New York, 2004; c) Organic Light-Emitting Materials and
Devices (Eds.: Z. Li, H. Meng), CRC Press, Boca Raton, 2007;
d) Highly Efficient OLEDs with Phosphorescent Materials (Ed.: H.
Yersin), Wiley-VCH, Weinheim, 2008.
[2] D. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl.
Phys. Lett. 1999, 75, 442–444.
and references therein.
[5] Selected recent examples: a) G. Mꢃrkl, H. K. P. Berr, Tetrahedron
Lett. 1992, 33, 1601–1604; b) A. Kunai, Y. Yuzuriha, A. Naka, M.
Matsuda, S. Kadowaki, Y. Yamaguchi, M. Murakami, Chem.
kami, Synlett 2008, 561–564; g) M. Tobisu, M. Onoe, Y. Kita, N.
Received: February 8, 2010
Published online: April 15, 2010
Chem. Asian J. 2010, 5, 1376 – 1381
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1381