C O M M U N I C A T I O N S
5). Thus, a symmetrical N,N′-bis(heteroaryl)piperazine 2af was
easily prepared.13
References
(1) (a) Hili, R.; Yudin, A. K. Nat. Chem. Biol. 2006, 2, 284. (b) Amino Group
Chemistry, From Synthesis to the Life Sciences; Ricci, A., Eds.; Wiley-
VCH: Weinheim, 2007.
(2) Reviews: (a) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219,
131. (b) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534. (c) Surry, D. S.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.
(3) Selected examples: (a) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5,
793. (b) Ma, D. W.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453. (c) Cai,
Q.; Zhu, W.; Zhang, H.; Zhang, Y. D.; Ma, D. W. Synthesis 2005, 496. (d)
Lu, Z.; Twieg, R. J. Tetrahedron 2005, 61, 903. (e) Shafir, A.; Buchwald,
S. L. J. Am. Chem. Soc. 2006, 128, 8742.
(4) Cu-mediated oxidative amination of arylboronic acids also has been
developed. Selected works: (a) Chan, D. M. T.; Monaco, K. L.; Wang,
R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933. (b) Lam, P. Y. S.;
Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.;
Combs, A. Tetrahedron Lett. 1998, 39, 2941. (c) Antilla, J. C.; Buchwald,
S. L. Org. Lett. 2001, 3, 2077. (d) Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y.
Angew. Chem., Int. Ed. 2009, 48, 1114. Related C-O bond formation: (e)
Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937.
(5) (a) Tsang, W. C. P.; Zheng, M.; Buchwald, S. L. J. Am. Chem. Soc. 2005,
127, 14560. (b) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc.
2006, 128, 9048. (c) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130,
14058. (d) Jordan-Hore, A. A.; Johansson, C. C. C.; Gulias, M.; Beck,
E. M.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 16184. (e) Mei, T.-S.;
Wang, X.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 10806.
Next, we turned our attention to the amination of benzoxazole
(4a) (Table 3).14 Under the same conditions as those shown in
Tables 1 and 2, 4a reacted with 2a sluggishly, and the desired 5aa
was detected in only 17% GC yield (entry 1). However, to our
delight, the simple replacement of LiO-t-Bu with NaO-t-Bu
significantly improved the reaction efficiency to afford 5aa in 76%
yield (entry 2). By using the modified protocol, benzoxazoles 4b-d
having the substitutions at the 5-position were aminated effectively
(entries 3-5), and the piperizine and dibutylamine moieties also
could be introduced to the benzoxazole core (entries 6 and 7).15
Table 3. Copper-Catalyzed Direct Amination of Various
Benzoxazoles 4a
entry
R 4
2
5, yield (%)b
(6) (a) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G.
J. Am. Chem. Soc. 2007, 129, 7500. (b) Stokes, B.; Richert, K. J.; Driver,
T. G. J. Org. Chem. 2009, 74, 6442.
1c
2
3
4
5
6
7
H (4a)
4a
Ph (4b)
Me (4c)
Cl (4d)
4a
2a
2a
2a
2a
2a
2b
2c
5aa, 17d
5aa, 76
5ba, 62
5ca, 53
5da, 73
5ab, 66
5ac, 38
(7) (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc.
2006, 128, 6790. (b) Uemura, T.; Imoto, S.; Chatani, N. Chem. Lett. 2006,
35, 842. (c) Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A. Org. Lett.
2009, 11, 1607. (d) Wang, Q.; Schreiber, S. L. Org. Lett. 2009, 11, 5178.
(8) (a) Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew. Chem., Int. Ed.
2009, 48, 9127. Also see: (b) Armstrong, A.; Collins, J. C. Angew. Chem.,
Int. Ed. 2010, 49, 2282. (c) Shimasaki, T.; Tobisu, M.; Chatani, N. Angew.
Chem., Int. Ed. 2010, 49, 2929.
4a
a A mixture of Cu(acac)2 (0.050 mmol), bpy (0.050 mmol), 4 (0.50
mmol), 2 (0.75 mmol), and NaO-t-Bu (1.0 mmol) in toluene (3.0 mL)
was stirred at room temperature for 2 h under N2. b Yield of isolated
product. c With LiO-t-Bu instead of NaO-t-Bu. d GC yield.
(9) Recently, the utility of chloroamides and chloroamines as the electrophilic
nitrogen sources has been reported. (a) He, C.; Chen, C.; Cheng, J.; Liu,
C.; Liu, W.; Li, Q.; Lei, A. Angew. Chem., Int. Ed. 2008, 47, 6414. (b)
Barker, T. J.; Jarvo, E. R. J. Am. Chem. Soc. 2009, 131, 15598. (c)
Hatakeyama, T.; Yoshimoto, Y.; Ghorai, S. K.; Nakamura, M. Org. Lett.
2010, 12, 1516. Cu-catalyzed amination with hydroxylamines: (d) Berman,
A. M.; Johnson, J. S. J. Am. Chem. Soc. 2004, 126, 5680. Alkali-metal-
mediated amination of thiadiazoles with NH2-OH: (e) Rao, V. R.;
Srinivasan, V. R. Indian J. Chem. 1965, 3, 417.
(10) Sanford observed the C-N coupling product as the minor product in the
palladium-catalyzed sp2 C-H amination with N-chlorosuccinimide (NCS).
Whitefield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142.
During the preparation of this manuscript, Hartwig reported the palladium-
catalyzed intramolecular direct amination of oxime esters: Tan, Y.; Hartwig,
J. F. J. Am. Chem. Soc. 2010, 132, 3676.
While the present chloroamines are readily accessible from the
corresponding amines and bleach,16 a more convenient chlorination/
direct amination sequence is operative.9b Namely, upon the exposure
of 2a generated in situ through the chlorination of morpholine with
N-chlorosuccinimide (NCS) in toluene to a mixture of 1a, Cu(acac)2/
bpy, and LiO-t-Bu, 3aa was produced in a slightly lower yield
(Scheme 1). Amino-1,3,4-oxazole 3ea was also synthesized in the
same manner.
(11) (a) Yale, H. L.; Losee, K. J. Med. Chem. 1966, 9, 478. (b) Omar, F. A.;
Mahfouz, N. M.; Rahman, M. A. Eur. J. Med. Chem. 1996, 31, 819. (c)
Laddi, U. V.; Desai, S. R.; Bennur, R. S.; Bennur, S. C. Indian J. Heterocycl.
Chem. 2002, 11, 319. (d) Rostom, S. A. F.; Shalaby, M. A.; El-Demellawy,
M. A. Eur. J. Med. Chem. 2003, 38, 959.
Scheme 1
(12) See Supporting Information for the detailed optimization studies.
(13) The direct coupling with the chloroamide such as N-chloroacetanilide was
unsuccessful, and the starting materials were recovered unchanged.
(14) 2-Aminobenzoxazoles in medicinal chemistry: (a) Sato, Y.; Yamada, M.;
Yoshida, S.; Soneda, T.; Ishikawa, M.; Nizato, T.; Suzuki, K.; Konno, F.
J. Med. Chem. 1998, 41, 3015. (b) Yoshida, S.; Watanabe, T.; Sato, Y.
Bioorg. Med. Chem. 2007, 15, 3515.
(15) Among other azoles tested, 5-(4-methoxyphenyl)oxazole reacted with 2a
in the presence of the same Cu(acac)2/bpy catalyst and LiHMDS as the
base to give the aminated product in 30% yield. The reactions with thiazole
and imidazole were unsuccessful.
(16) Zhong, Y.-L.; Zhou, H.; Gauthier, D. R.; Lee, J.; Askin, D.; Dolling, U. H.;
Volante, R. P. Tetrahedron Lett. 2005, 46, 1099.
(17) Base-assisted cupration: (a) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc.
2007, 129, 12404. (b) Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.;
Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 3296. (c) Kawano, T.;
Yoshizumi, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 3072.
(d) Besselie´vre, F.; Piguel, S. Angew. Chem., Int. Ed. 2009, 48, 9553, and
references cited therein.
(18) Regardless of the valency of copper precursors, a small amount of
homocoupling product of azole was detected in all cases by GC-MS. The
result is suggestive of the existence of Cu species of a higher oxidation
state in the catalytic cycle. (a) Huffman, L. M.; Stahl, S. S. J. Am. Chem.
Soc. 2008, 130, 9196. (b) Srieter, E. R.; Bhayana, B.; Buchwald, S. L.
J. Am. Chem. Soc. 2009, 131, 78. (c) King, A. E.; Brunold, T. C.; Stahl,
S. S. J. Am. Chem. Soc. 2009, 131, 5044. Also see ref 17d. See Supporting
Information for the detailed discussion.
Although the exact reaction mechanism still remains unclear,
the most plausible pathway would involve (i) base-assisted cupration
of azole,17 (ii) subsequent oxidative addition of the chloroamine
to the resulting (heteroaryl)Cu(I) intermediate, and (iii) productive
reductive elimination from the Cu(III) complex.18 Ongoing work
seeks to uncover the detailed mechanism and expand the reaction
scope with chloroamines of high potential in direct C-H amination
chemistry.
Acknowledgment. This work was supported by Grants-in-Aid
for Scientific Research from MEXT and JSPS, Japan.
Supporting Information Available: Experimental details and
characterization data for new compounds. This material is available
JA101939R
9
J. AM. CHEM. SOC. VOL. 132, NO. 20, 2010 6901