Reactions of Tris(dimethylsilyl)methane and Polymers Containing Si H Groups with Various Hydroxy Compounds 367
NMR (CDCl3): δ 1.0, 1.1 (SiMe2), 10.6 (CH), 14.2
24.7 (CH3CH2CH2), 30.7 (CH3(CH2)2CH2), 31.7
(CH3(CH2)3CH2), 61.3 (CH2O); MS (EI) m/z (%):
475(5, [M − Me]+), 391 (35), 375 (8), 291 (10), 205
(100), 189 (38). Anal. Calcd for C25H58Si3O3: C, 61.2;
H, 11.8. Found: C, 61.3; H, 11.7.
(CH3CH2), 21.9 (CH3CHO), 31.22 (CH3CH2), 68.37
(CHO); MS (EI) m/z (%): 391 (30, [M − Me]+), 333
(20), 261 (18), 205 (100), 189 (17). Anal. Calcd for
C19H46Si3O3: C, 56.1; H, 11.3. Found: C, 55.9; H, 11.3.
[(CH3)2CHCH2OMe2Si]3CH (5). Yield 2.4 g,
56.2%, b.p. 90◦C/2 mmHg; IR (KBr): 2960 (C H),
1253, 865 (Si C), 1086 (Si O), 1016 (C O) cm−1;
1H NMR (CDCl3): δ −0.0 (s, 1H, CH), 0.2 (s, 18H,
(PhOMe2Si)3CH (10). Yield: 2.22 g, 45.3%, m.p.
48–50◦C; IR (cm−1): 3029 (Ar H), 2960 (C H), 1597,
1497 (C C), 1272, 852 (Si C), 1060 (Si O), 1027
(C O); 1H NMR (CDCl3): δ 0.43 (s, 1H, CH), 0.49 (s,
18H, SiMe2), 6.85–6.87 (dd, 6H, m-H), 6.96–6.99 (t,
3H, p-H), 7.23–7.27 (t, 6H, o-H); 13C NMR (CDCl3): δ
0.1 (SiMe2), 9.8 (CH), 118.0 (m-C), 119.3 (p-C), 127.5
(o-C), 153.0 (i-C); MS (EI) m/z (%): 391 (8, [M −
Ph]+), 316 (4), 301 (7), 281 (7), 253 (4), 223 (100),
207 (25), 93 (5). Anal. Calcd for C25H34 Si3O3: C, 64.3;
H, 7.3. Found: C, 63.9; H, 7.1.
3
SiMe2), 0.9 (d, 18H, (CH3)2CH, JHH = 8 Hz), 1.7
(m, 3H, (CH3)2CH, 3 J(H H) = 8 Hz), 3.3 (d, 6H,
CH2O, 3 JHH = 8 Hz), 13C NMR (CDCl3): δ 0.1 (SiMe2),
9.7 (CH), 18.2 ((CH3)2CH), 29.7 ((CH3)2CH), 68.2
(CH2O); MS (EI) m/z (%): 391 (70, [M − Me]+), 333
(20), 261(25), 205 (100), 189 (18). Anal. Calcd for
C19H46Si3O3: C, 56.1; H, 11.3. Found: C, 56.1; H, 11.2.
(CH3CH2CH2CH2CH2OMe2Si)3CH
(6). Yield
Reaction between (HMe2Si)3CH and PhCH2OH
3.31 g, 70%), b.p. 130◦C/2 mmHg; IR: 2953 (C H),
1251, 858 (Si C), 1094 (Si O), 1008 (C O) cm−1;
1H NMR (CDCl3): δ −0.04 (s, 1H, CH), 0.18 (s, 18H,
An attempt to synthesize PhCH2OMe2Si)3CH by the
general procedure unexpectedly gave the product
(PhCH2)2O (9), b.p. 120◦C/2 mmHg; IR: 3031 (Ar H),
2922 (C H), 1645, 1453 (C C), 1093 (C O), 741
3
SiMe2), 0.88 (t, 9H, CH3CH2, JHH = 8 Hz), 1.29 (m,
3
12H, CH3(CH2)2CH2, JHH = 4 Hz), 1.48 (m, 6H,
1
CH3(CH2)2CH2 3 JHH = 4 Hz), 3.51 (t, 6H, CH2O,
3 JHH = 8 Hz); 13C NMR (CDCl3,): δ 0.0 (SiMe2),
9.6 (CH), 13.0 (CH3CH2), 21.5 (CH3CH2), 27.2
(CH3CH2CH2), 31.4 (CH3(CH2)2CH2), 61.2 (CH2O);
MS (EI) m/z (%): 433 (100, [M − Me]+), 361 (15), 275
(18), 205 (60),189 (18). Anal. Calcd for C22H52Si3O3:
C, 58.9; H, 11.6. Found: C, 58.9; H, 11.5.
(Ar H bend.) cm−1; H NMR (CDCl3): δ 4.66 (s, 4H,
CH2O), 7.45–7.47 (10H, Ph); 13C NMR (CDCl3): δ
70.9 (CH2O), 126.3, 126.5, 127.3, 137.1 (Ph); MS (EI)
m/z (%): 107 (20), 92 (100), 77 (19). Anal. Calcd for
C14H14O: C, 84.8; H, 7.1. Found: C, 84.4; H, 6.9.
Attempted Synthesis of (CH3COOMe2Si)3CH
[(CH3CH2CH2)(CH3)CHOMe2Si]3CH (7). Yield:
2.4 g, 50.8%, b.p. 120◦C/2 mmHg; IR: 2963 (C H),
1251, 846 (Si C), 1127 (Si O), 1018(C O) cm−1; 1H
NMR (CDCl3): δ −0.09 (s, 1H, CH), 0.19 (d, 18H,
The reaction between (HMe2Si)3CH and acetic acid
with the general procedure described above gave the
known compound HC(Me2SiOSiMe2)3CH (11), 1.25
g, 56.3%, m.p. 275–276◦C; IR 2952 (C H), 1258, 868
3
1
SiMe2,3 JHH = 8 Hz), 0.87 (t, 9H, CH3CH2, JHH = 8
(Si C), 1051 (Si O Si) cm−1; H NMR (CDCl3): δ
3
Hz), 1.07 (d, 9H, CH3CHO, JHH = 8 Hz), 1.32 (m,
−0.85 (s, 2H, CH) and 0.18 (s, 36H, SiMe2); 13C NMR
(CDCl3): δ 5.2 (SiMe2), 12.3 (CH); MS (EI) m/z (%):
422 (2, M+), 407 (100, [M − Me]+), 391 (5), 319 (8),
303 (10), 188 (7). Anal. Calcd for C14H38 Si6O3: C,
39.7; H, 8.9. Found: C, 39.7; H, 8.9.
3
12H, CH3(CH2)2, JHH = 4 Hz), 3.74 (m, 3H, CHO,
3 JHH = 4 Hz); 13C NMR CDCl3): δ 0.9, 1.0 (SiMe2),
10.6 (CH), 13.2 (CH3CH2), 17.9 (CH3CHO), 22.5
(CH3CH2), 41.0 (CH3CH2CH2), 66.9 (CHO); MS (EI)
m/z (%): 433 (25, [M − Me]+), 361 (20), 275 (15), 205
(100), 189 (14). Anal. Calcd for C22H52Si3O3: C, 58.9;
H, 11.6. Found: C, 59.0; H, 11.5.
Synthesis of (n-BuOMe2Si)3CSiMe2H (12)
A 50-mL round-bottom flask equipped with a stir-
rer, septum, and gas-inlet needle was charged
with diisopropylamine (0.25 g, 2.5 mmol) and
THF (5 mL). The flask was placed in a water/ice
bath and then n-BuLi (0.93 mL, 2.7 M solution
in hexane) was added dropwise via a syringe to
give a clear yellow solution that was stirred for
an additional 30 min. The lithium diisopropy-
lamide (LDA) solution was transferred into a drop-
ping funnel and added to a 100-mL round-bottom
(CH3CH2CH2CH2CH2CH2OMe2Si)3CH
(8).
Yield 3.2 g, 62.1%), b.p. 100◦C/2 mmHg; IR: 2952
(C H), 1252, 862 (Si C), 1093 (Si O), 1013(C O)
cm−1; 1H NMR (CDCl3): δ −0.0 (s, 1H, CH), 0.2
3
(s, 18H, SiMe2), 0.9 (t, 9H, CH3CH2, JHH = 8 Hz),
3
1.3 (m, 18H, CH3(CH2)3CH2, JHH = 4 Hz), 1.5
3
(m, 6H, CH3(CH2)3CH2, JHH = 8 Hz), 3.5 (t, 6H,
3
CH2O, JHH = 8 Hz); 13C NMR (CDCl3): δ 0.12
(SiMe2), 9.6 (CH), 13.0 (CH3CH2), 21.7 (CH3CH2),
Heteroatom Chemistry DOI 10.1002/hc