S.E. Denmark, J.D. Baird / Tetrahedron 65 (2009) 3120–3129
3129
11. Kurti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis;
Elsevier: London, 2005; pp 172–173.
12. So¨derberg, B. C.; Chisnell, A. C.; O’Neil, S. N.; Shriver, J. A. J. Org. Chem. 1999, 64,
9731–9734.
13. (a) Cadogan, J. I. G.; Cameron-Wood, M. Proc. Chem. Soc. (London) 1962, 361; (b)
Cadogan, J. I. G. Synthesis 1969, 11–17.
14. (a) Sundberg, R. J. J. Org. Chem. 1965, 30, 3604–3610; (b) Sundberg, R. J.; Tam-
azaki, T. J. Org. Chem. 1967, 32, 290–294.
(458 mg, 1.2 mmol, 1.2 equiv) in toluene (2.0 mL) in a 5-mL round-
bottomed flask under an atmosphere of argon. To this mixture 4-
chlorobenzonitrile (138 mg, 1.0 mmol, 1.0 equiv), S-Phos (20.5 mg,
0.05 mmol, 0.05 equiv), and APC (9 mg, 0.025 mmol, 0.025 equiv)
were added. After being stirred at 70 ꢀC for 1 h, the black, crude
reaction mixture was filtered through a plug of silica gel (3 g) and
eluted with EtOAc (200 mL) to give a light yellow solution that was
concentrated under reduced pressure. The resulting yellow semi-
solid was purified by silica gel column chromatography
(20ꢂ100 mm) and eluted with hexane/EtOAc, 9:1 (30ꢂ10-mL
fractions). The combined fractions were further purified by con-
centration and recrystallization in boiling MeOH (2 mL) to afford
357 mg (87%) of 39g as a white solid (needles). Data for 39g: mp
15. Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 10
5, 2873–2920.
16. Fukuyama, T.; Chen, X.; Peng, G. J. Am. Chem. Soc. 1994, 116, 3127–3128.
17. Fu¨ rstner, A.; Hupperts, A. J. Am. Chem. Soc. 1995, 117, 4468–4475.
18. Fuwa, H.; Sasaki, M. Org. Biomol. Chem. 2007, 5, 2214–2218.
19. (a) Arcadi, A.; Cacchi, S.; Marinelli, F. Tetrahedron Lett. 1992, 33, 3915–3918; (b)
Lu, B. Z.; Zhao, W.; Wei, H.; Dufour, M.; Farina, V.; Senanayake, C. H. Org. Lett.
2006, 8, 3271–3274.
20. (a) Reviews: Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285–2309; (b) Larock,
R. C. Top. Organomet. Chem. 2005, 14, 147–182.
21. Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991, 113, 6689–6690.
22. Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652–7662.
23. Nishikawa, T.; Wada, K.; Isobe, M. Biosci. Biotechnol. Biochem. 2002, 66, 2273–
2278.
24. Roschanger, F.; Liu, J.; Estanove, E.; Dufour, M.; Rodriguez, S.; Farina, V.; Hickey,
E.; Hossain, A.; Jones, P. J.; Lee, H.; Lu, B. Z.; Varsolona, R.; Schroder, J.; Beaulieu,
P.; Gillard, J.; Senanayake, C. H. Tetrahedron Lett. 2008, 49, 363–366.
25. (a) Brodfuehrer, P. R.; Chen, B. C.; Sattelberg, T. R.; Smith, P. R.; Reddy, J. P.; Stark,
D. R.; Quinlan, S. L.; Reid, J. G.; Thottathil, J. K.; Wang, S. J. J. Org. Chem. 1997, 62,
9192–9202; (b) Chen, C.; Lieberman, D. R.; Larsen, R. D.; Reamer, R. A.; Ver-
hoeven, T. R.; Reider, P. J. Tetrahedron Lett. 1994, 35, 6981–6984.
26. Kurti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis;
Elsevier: London, 2005; pp 260–261.
27. (a) Denmark, S. E.; Baird, J. D. Org. Lett. 2004, 6, 3649–3652; (b) Denmark, S. E.;
Baird, J. D. Org. Lett. 2006, 8, 793–795; (c) Denmark, S. E.; Baird, J. D.; Regens, C.
S. J. Org. Chem. 2008, 73, 1440–1455.
28. (a) Kosugi, M.; Shimizu, Y.; Migita, T. J. Organomet. Chem. 1977, 129, C36–C38;
(b) Farina, V.; Krishnamurthy, V.; Scott, W. Org. React. 1997, 50, 1–652; (c)
Mitchell, T. N. In Metal-catalyzed Cross-coupling Reactions, 2nd ed.; de Meijere, A.,
Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; Chapter 3.
73–74 ꢀC (MeOH); 1H NMR (500 MHz, CDCl3)
d
7.67 (d, J¼8.0, 2H,
HC(C200)), 7.39 (d, J¼8.0, 2H, HC(C300)), 7.22 (m, 3H, HC(C40), HC(C4)),
7.10 (m, 2H, HC(C50), HC(C7)), 6.87 (m, 3H, HC(C30), HC(C6)), 5.15 (s,
2H, HC(C10)), 3.89 (s, 3H, HC(C10)), 2.67 (t, J¼7.8, 2H, HC(C1%)), 1.62
(t, 2H, HC(C2%)), 1.26 (m, 4H, HC(C300), HC(C400)), 0.84 (t, J¼7.0, 3H,
HC(C5%)); 13C NMR (125.6 MHz, CDCl3) 154.1 (C(5)), 138.0 (C(20)),
d
137.1 (C(100)), 136.2 (C(8)), 132.3 (C(9)), 132.0 (C(200)), 130.9 (C(300)),
128.6 (C(30)), 128.2 (C(2)), 127.2 (C(7)), 125.8 (C(40)), 118.6 (C(500)),
115.7 (C(3)), 112.6 (C(50)), 111.4 (C(400)), 111.1 (C(6)), 101.4 (C(4)), 55.9
(C(10)), 47.7 (C(10)), 31.7 (C(3%)), 30.5 (C(2%)), 24.5 (C(1%)), 22.3
(C(4%)), 14.0 (C(5%)); IR (Nujol)
d 2936 (s), 2860 (s), 1456 (s), 1377
(m), 1224 (w), 1170 (w), 799 (w), 738 (w), 728 (w); MS (EI, 70 eV) m/
z 408 (Mþ, 46), 351 (74), 91 (100), 219 (9), 83 (80); TLC: Rf 0.19
(hexane/EtOAc, 9:1) [silica gel, UV]. Anal. Calcd for C28H28N2O
(408.53): C, 82.32; H, 6.91; N, 6.86. Found: C, 82.18; H, 6.98; N, 6.95.
29. (a) Negishi, E.-i.; King, A. O.; Okukado, N. J. Organomet. Chem. 1977, 42, 1821–
1823; (b) Knochel, P.; Millot, N.; Rodriguez, A. L.; Tucker, C. E. Org. React. 2001,
58, 417–731; (c) Knochel, P. Science of Synthesis; Thieme Verlag: Stuttgart, 2004;
Vol. 3, 5–90; (d) Knochel, P.; Calaza, M. I.; Hupe, E. In Metal-catalyzed Cross-
coupling Reactions, 2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH:
Weinheim, 2004; Chapter 11.
30. (a) Miyaura, N.; Yamada, K.; Suginome, A.; Suzuki, A. J. Am. Chem. Soc. 1985, 107,
972–980; (b) Suzuki, A. Pure Appl. Chem. 1994, 66, 213–222; (c) Miyaura, N.;
Suzuki, A. Chem. Rev. 1995, 95, 2457–2483; (d) Hall, D. G. Boronic Acids; Wiley-
VCH: Weinheim, 2005; pp 3–14; (e) Miyaura, N. In Metal-catalyzed Cross-
Coupling Reactions, 2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH:
Weinheim, 2004; Chapter 2.
Acknowledgements
We are grateful to the National Institutes of Health for generous
financial support (R01 GM63167). J.D.B. thanks Pfizer, Inc. for
a graduate fellowship.
Supplementary data
Complete experimental details for all preparative procedures
along with full characterization of all starting materials and prod-
ucts as well as optimization experiments (66 pages) are provided.
Supplementary data associated with this article can be found in the
31. For reviews on silicon-based cross-coupling, see: (a) Hiyama, T. In Metal-cata-
lyzed Cross-coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH:
Weinheim, 1998; Chapter 10; (b) Hiyama, T.; Shirakawa, E. Top. Curr. Chem.
2002, 219, 62–85; (c) Denmark, S. E.; Sweis, R. F. Chem. Pharm. Bull. 2002, 50,
1531–1541; (d) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835–846;
(e) Denmark, S. E.; Ober, M. H. Aldrichimica Acta 2003, 36, 75–85; (f) Denmark,
S. E.; Sweis, R. F. In Metal-catalyzed Cross-coupling Reactions, 2nd ed.; de Mei-
jere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; Chapter 4.
32. Denmark, S. E.; Baird, J. D. Chem.dEur. J. 2006, 12, 4954–4963.
33. Denmark, S. E.; Kallemeyn, J. M. Org. Lett. 2003, 5, 3483–3486.
34. Lee, M.; Ko, S.; Chang, S. J. Am. Chem. Soc. 2000, 122, 12011–12012.
35. Werner, H.; Kuhn, A. J. Organomet. Chem. 1979, 179, 439–445.
36. Kasiotis, K. M.; Haroutounian, S. A. Bioorg. Chem. 2006, 34, 1–14.
37. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis; Wiley-In-
terscience: New York, NY, 1999; pp 615–631.
References and notes
1. Kawasaki, T.; Higuchi, K. Nat. Prod. Rep. 2005, 22, 761–793.
2. Walsh, T. F.; Toupence, R. B.; Ujjainwalla, F.; Young, J. R.; Goulet, M. T. Tetra-
hedron 2001, 57, 5233–5241.
3. Watson, T. J. N.; Horgan, S. W.; Shah, R. S.; Farr, R. A.; Schnettler, R. A.; Nevill, C.
R.; Weiberth, F. J.; Huber, E. W.; Baron, B. M.; Webster, M. E.; Mishra, R. J.;
Harrison, B. L.; Nyce, P. L.; Rand, C. L.; Gorlaski, C. T. Org. Process Res. Dev. 2000,
4, 477–487.
38. Cropper, E. L.; White, A. J. P.; Ford, A.; Hii, K. K. J. Org. Chem. 2006, 71, 1732–1735.
39. McLaughlin, M.; Palucki, M.; Davies, I. W. Org. Lett. 2006, 8, 3307–3310.
40. Lizos, D. E.; Murphy, J. A. Org. Biomol. Chem. 2003, 1, 117–122.
41. Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005,
127, 4685–4696.
4. Jacotot, B.; Banga, J. D.; Pfister, P.; Mehra, M. Br. J. Clin. Pharmacol. 1994, 38, 257–
263.
5. (a) Brown, R. K. In Indoles Part One; Houlihan, W. J., Ed.; Wiley: New York, NY,
1972; pp 227–559; (b) Sundberg, R. Indoles; Academic: San Diego, 1996; pp
7–53; (c) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875–2911.
6. Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000, 1045–1075.
7. Robinson, B. The Fischer Indole Synthesis; Wiley-Interscience: New York, NY,
1982.
8. Clark, R. D.; Repke, D. H. Heterocycles 1984, 63, 214–221.
9. Castro, C. E.; Stephens, R. D. J. Org. Chem. 1963, 28, 2163.
10. Nenitzescu, C. D. Bull. Soc. Chim. Romania 1929, 11, 37–43.
42. The pH of the silica gel used in these laboratories was found to be slightly acidic
(pH 6.6–7.0).
43. Arcadi, A.; Cacchi, S.; Marinelli, F. Tetrahedron Lett. 1986, 27, 6397–6400.
44. Milne, J. E.; Buchwald, S. L. J. Am. Chem. Soc. 2004, 126, 13028–13032.
45. (a) Zheng, N.; Anderson, K. W.; Huang, X.; Nguyen, H. N.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2007, 46, 7509–7512; (b) Charles, M. D.; Schultz, P.; Buchwald, S.
L. Org. Lett. 2005, 7, 3965–3968.
46. Merour, J.; Benoit, J. Curr. Org. Chem. 2001, 5, 471–506.