B.E. Bode et al. / Journal of Organometallic Chemistry 694 (2009) 1172–1179
1179
[11] E. Narr, A. Godt, G. Jeschke, Angew. Chem., Int. Ed. 41 (2002) 3907.
[12] (a) I.M.C.v. Amsterdam, M. Ubbink, G.W. Canters, M. Huber, Angew. Chem.,
Int. Ed. 42 (2003) 62;
to 136 ns and s2 to 1200 ns. Usually 300 scans were accumulated
with 294 data points and time increments t of 4 ns giving an
approximate measurement time of 18 h necessary to obtain a sig-
nal-to-noise ratio >200:1. Proton modulation was suppressed by
D
(b) C.W.M. Kay, H.E. Mkami, R. Cammack, R.W. Evans, J. Am. Chem. Soc. 129
(2007) 4868;
(c) Z. Yang, J. Becker, S. Saxena, J. Magn. Reson. 188 (2007) 337.
[13] A.M. Raitsimring, C. Gunanathan, A. Potapov, I. Efremenko, J.M.L. Martin,
D. Milstein, D. Goldfarb, J. Am. Chem. Soc. 129 (2007) 14138.
[14] C. Elsässer, M. Brecht, R. Bittl, J. Am. Chem. Soc. 124 (2002) 12606.
[15] A.V. Astashkin, J. Seravalli, S.O. Mansoorabadi, G.H. Reed, S.W. Ragsdale, J. Am.
Chem. Soc. 128 (2006) 3888.
addition of eight spectra of variable s1 with a
Ds1 of 8 ns [38].
For comparison with simulations the time traces were divided by
a monoexponential decay and normalized to the point t = 0.
3.4. PELDOR simulations
[16] B.E. Bode, J. Plackmeyer, T.F. Prisner, O. Schiemann, J. Phys. Chem. A 112 (2008)
5064.
[17] S.O. Mansoorabadi, G.H. Reed, in: J. Telser (Ed.), Paramagnetic Resonance of
Metallobiomolecules, American Chemical Society, Washington, 2003, p. 82.
[18] W.B. Mims, in: S. Geschwind (Ed.), Electron Paramagnetic Resonance, Plenum,
New York, 1972, p. 263.
[19] (a) R.G. Larsen, D.J. Singel, J. Chem. Phys. 98 (1993) 5134;
(b) A.D. Milov, A.G. Maryasov, Y.D. Tsvetkov, Appl. Magn. Reson. 15 (1998)
107.
Commonly PELDOR data are analyzed by using data inversion
methods like Tikhonov regularization [39]. However, up to now
all these methods are based on the assumption of negligible angu-
lar correlations and exchange coupling contributions, which can
lead to erroneous results for systems like 1 and 3. We have, there-
fore, chosen to simulate the experimental PELDOR time traces of 1
with a home-written MatlabÒ program, in analogy to the proce-
dure as described for 3 in references [16,40].
[20] (a) M.O. Senge, M.G.H. Vicente, K.R. Gerzevske, T.P. Forsyth, K.M. Smith, Inorg.
Chem. 33 (1994) 5625;
(b) T.E. Clement, D.J. Nurco, K.M. Smith, Inorg. Chem. 37 (1998) 1150.
[21] D.L. Cullen, E.F. Meyer Jr., J. Am. Chem. Soc. 96 (1974) 2095.
[22] Low temperature cw X-band EPR spectra of 1 and 3 showed strong half-field
signals at g = 4 indicative of close spin–spin contacts. These signals
disappeared completely upon adding 1-methylimidazole pointing to
intermolecular stacking of these compounds as the origin for this strong
spin–spin coupling which can be disrupted by coordination of 1-
methylimidazole to copper(II) as known from the literature.
[23] (a) A.G. Maryasov, Yu.D. Tsvetkov, Appl. Magn. Reson. 18 (2000) 583;
(b) A.D. Milov, B.D. Naumov, Y.D. Tsvetkov, Appl. Magn. Reson. 26 (2004) 587.
[24] A. Weber, O. Schiemann, B. Bode, T.F. Prisner, J. Magn. Reson. 157 (2002)
277.
Acknowledgements
We thank Dr. Ute Bahr, Goethe-University, for recording mass
spectra. This work has been supported by the Deutsche Fors-
chungsgemeinschaft (SFB 579 ‘‘RNA-ligand interactions” and the
Center for Biomolecular Magnetic Resonance (BMRZ) Frankfurt.
[25] (a) O. Kahn, Molecular Magnetism, VCH, New York, 1993;
(b) S.S. Eaton, K.M. More, B.M. Sawant, P.M. Boymel, G.R. Eaton, J. Magn. Reson.
50 (1983) 435.
References
[26] (a) C. Elschenbroich, O. Schiemann, O. Burghaus, K. Harms, J. Pebler,
Organometallics 18 (1999) 3273;
[1] M. Ruben, J. Rojo, F.J. Romero-Salguero, L.H. Uppadine, J.-M. Lehn, Angew.
Chem., Int. Ed. 43 (2004) 3644.
[2] (a) A. Messerschmidt, R. Huber, T. Poulos, K. Wieghardt (Eds.), Handbook of
Metalloproteins, vols. 1–2, John Wiley & Sons, Ltd., Chichester, 2001;
(b) W.F. DeGrado, C.M. Summa, V. Pavone, F. Nastri, A. Lombardi, Ann. Rev.
Biochem. 68 (1999) 779.
[3] (a) F. Eckstein, D.M. Lilley, Nucleic acids and molecular biology, Catalytic RNA,
vol. 10, Springer, Berlin, 1995;
(b) R.F. Gesteland, T.R. Cech, J.F. Atkins, The RNA World, third ed., Cold Spring
Harbor, New York, 2006.
[4] (a) M. Ubbink, J.A.R. Worrall, G.W. Canters, E.J.J. Groenen, M. Huber, Ann. Rev.
Biophys. Biomol. Struct. 31 (2002) 393;
(b) C. Elschenbroich, M. Wolf, O. Schiemann, K. Harms, O. Burghaus, J. Pebler,
Organometallics 21 (2002) 5810;
(c) C. Elschenbroich, J. Plackmeyer, K. Harms, O. Burghaus, J. Pebler,
Organometallics 22 (2003) 3369;
(d) C. Elschenbroich, J. Plackmeyer, M. Nowotny, K. Harms, J. Pebler, O.
Burghaus, Inorg. Chem. 44 (2005) 955;
(e) C. Elschenbroich, O. Schiemann, O. Burghaus, K. Harms, Chem. Commun.
(2005) 2149.
[27] J. Fritscher, M. Beyer, O. Schiemann, Chem. Phys. Lett. 364 (2002) 393.
[28] C. Elschenbroich, O. Schiemann, O. Burghaus, K. Harms, J. Am. Chem. Soc. 119
(1997) 7452.
[29] (a) T. Kálai, M. Balog, J. Jekö, K. Hideg, Synthesis (1999) 973;
(b) O. Schiemann, N. Piton, J. Plackmeyer, B.E. Bode, T.F. Prisner, J.W. Engels,
Nat. Protoc. 2 (2007) 904.
(b) C. Calle, A. Sreekanth, M.V. Fedin, J. Forrer, I. Garcia-Rubio, I.A. Gromov,
D. Hinderberger, B. Kasumaj, P. Léger, B. Mancosu, G. Mitrikas, M.G. Santangelo,
S. Stoll, A. Schweiger, R. Tschaggelar, J. Harmer, Helv. Chim. Acta 89 (2006)
2495;
[30] N. Hayashi, M. Murayama, K. Mori, A. Matsuda, E. Chikamatsu, K. Tani,
K. Miyabayashi, M. Miyake, H. Higuchi, Tetrahedron 60 (2004) 6363.
[31] (a) D.P. Arnold, D.A. James, J. Org. Chem. 62 (1997) 3460;
(b) D.P. Arnold, R.D. Hartnell, Tetrahedron 57 (2001) 1335.
[32] G.M. Sheldrick, Acta Crystallogr. A 46 (1990) 467.
[33] A.L. Spek, J. Appl. Crystallogr. 36 (2003) 7.
[34] (a) I.J. Bruno, J.C. Cole, P.R. Edgington, M.K. Kessler, C.F. Macrae, P. McCabe,
J. Pearson, R. Taylor, Acta Crystallogr. B 58 (2002) 389;
(b) C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor,
M. Towler, J. van de Streek, J. Appl. Crystallogr. 39 (2006) 453.
[35] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
(c) N. Kisseleva, S. Kraut, A. Jäschke, O. Schiemann, HFSP J. 1 (2007) 127;
(d) N. Kisseleva, A. Khvorova, E. Westhof, O. Schiemann, RNA 11 (2005) 1.
[5] (a) G. Jeschke, Y. Polyhach, Phys. Chem. Chem. Phys. 9 (2007) 1895;
(b) O. Schiemann, T.F. Prisner, Quart. Rev. Biophys. 40 (2007) 1.
[6] (a) A.D. Milov, K.M. Salikhov, M.D. Shirov, Fiz. Tverd. Tela 23 (1981) 975;
(b) R.E. Martin, M. Pannier, F. Diederich, V. Gramlich, M. Hubrich, H.W. Spiess,
Angew. Chem., Int. Ed. 37 (1998) 2833.
[7] (a) M. Bennati, A. Weber, J. Antonic, D.L. Perlstein, J. Robblee, J. Stubbe, J. Am.
Chem. Soc. 125 (2003) 14988;
(b) G. Jeschke, Macromol. Rapid Commun. 23 (2002) 227;
(c) O. Schiemann, N. Piton, Y. Mu, G. Stock, J.W. Engels, T.F. Prisner, J. Am.
Chem. Soc. 126 (2004) 5722;
[36] S. Stoll, A. Schweiger, J. Magn. Reson. 178 (2006) 42.
[37] (a) R.W. Kreilick, J. Chem. Phys. 46 (1967) 4260;
(d) S.-Y. Park, P.P. Borbat, G. Gonzalez-Bonet, J. Bhatnagar, A.M. Pollard,
J.H. Freed, A.M. Bilwes, B.R. Crane, Nat. Struct. Mol. Biol. 13 (2006) 400.
[8] A. Godt, M. Schulte, H. Zimmermann, G. Jeschke, Angew. Chem., Int. Ed. 45
(2006) 7560.
[9] (a) V.P. Denysenkov, T.F. Prisner, J. Stubbe, M. Bennati, Proc. Natl. Acad. Sci.
USA 103 (2006) 13386;
(b) G.F. Hatch, R.W. Kreilick, J. Chem. Phys. 57 (1972) 3696.
G. Jeschke, G. Panek, A. Godt, A. Bender, H. Paulsen, Appl. Magn. Reson. 26
[38]
(2004) 223.
[39] (a) G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham,
C.R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30 (2006) 4733;
(b) M.K. Bowman, A.G. Maryasov, N. Kim, V.J. DeRose, Appl. Magn. Reson. 26
(2004) 23;
(c) Y.-W. Chiang, P.P. Borbat, J.H. Freed, J. Magn. Reson. 172 (2005) 279.
[40] D. Margraf, B.E. Bode, A. Marko, O. Schiemann, T.F. Prisner, Mol. Phys. 105
(2007) 2153.
(b) Y. Polyhach, A. Godt, C. Bauer, G. Jeschke, J. Magn. Reson. 185 (2007) 118;
(c) A. Savitsky, A.A. Dubinskii, M. Flores, W. Lubitz, K. Möbius, J. Phys. Chem. B
111 (2007) 6245.
[10] B.E. Bode, D. Margraf, J. Plackmeyer, G. Dürner, T.F. Prisner, O. Schiemann,
J. Am. Chem. Soc. 129 (2007) 6736.