erhodanines have been reported as small molecule inhibitors
of numerous targets such as cyclooxygenase and
5-lipoxygenase,5a ꢀ-lactamase,5b cathepsin D,5c HCV NS3
protease,5d aldose reductase,5e protein mannosyl transferase,5f
protein tyrosine phosphatases,5g phosphodiesterase-4,5h and
JNK-stimulating phosphatase.5i
Recent findings include the identification of certain
substituted rhodanines (for example Aa) as potential medici-
nal leads in developing therapeutic agents for the treatment
of Alzheimer’s disease6 (Figure 1b). Furthermore, efficient
synthetic inhibitors of anthrax lethal factor (ALF)7 as well
as small molecule matrix metalloprotease (MMP) inhibitors8
containing novel rhodanine zinc-chelating groups have been
identified.
istry. Recently, a simple and effective approach to the
synthesis of rhodanine derivatives via three-component
reactions in water has also been reported by Alizadeh et al.13
On the basis of these experiences, and in continuation of
our ongoing interest in the discovery of new reactions for
the synthesis of heterocycles from azo-ene systems, we
designed a novel method for the preparation of 5-hydrazi-
noalkylidene rhodanines from amines, carbon disulfide, and
1,2-diaza-1,3-dienes (Scheme 1).
Scheme 1
.
Retrosynthetic Strategy for the Preparation of
5-Hydrazinoalkylidene Rhodanines
Standard procedures for the preparation of the 2-thioxothi-
azolidin-4-ones, including reactions of isothiocyanate with
R-mercaptoacetic acid or its ester, reactions of ammonia or
primary amines with carbon disulfide, and R-haloalkanoic
acids are known.2 While these protocols in general are
suitable for construction of the rhodanine core, the 5-alky-
lidene rhodanine substructure may be accessed by coupling
the thiazolidinone nucleus assembly with subsequent second-
ary transformations.9 Despite the importance of these 5-un-
saturated rhodanine derivatives, there are no reports that
allow the direct formation of C5 hydrazinoalkylidene func-
tionalized rhodanine from acyclic building blocks.
Initially,. we explored tentatively the reaction of benzyl-
amine 1a (1 mmol), carbon disulfide (1 mmol), and 1,2-
diaza-1,3-diene 2a (1 mmol) at room temperature in THF
without the use of any base as catalyst. Under these
conditions, we were delighted to obtain the product 4a in
61% yield (Table 1, entry 1). In an attempt to improve the
yield, we varied the molar ratios of the reagents. When a
ratio of 1.5/1/3 was used, the reaction successfully gave the
desired rhodanine 4a in the best yield (83%) (Table 1, entry
3). The reaction was also carried out in different organic
solvents such as EtOH, CH2Cl2, CH3CN, H2O, and DMF
including solvent-free conditions (Table 1). In EtOH and
CH2Cl2, the yields were similar to the ones in THF, while
On the other hand, the utility of 1,2-diaza-1,3-dienes10 in
organic synthesis has been recognized for their ready
accessibility and good reactivity from the high electrophilic
(C4) center that can lead to a variety of heterocyclic rings
by means of a wide range of nucleophiles.10,11
Moreover, it is well-known that amines with carbon
disulfide and alkyl halides, epoxides, or Michael acceptors
afford dithiocarbamates,12 which have a variety of applica-
tions in organic, medicinal, material and agricultural chem-
(4) The thioxo group in rhodanines is known as a carboxylic acid
bioisoster: (a) Patani, G. A.; LaVoie, E. J. Chem. ReV. 1996, 96, 3147–
3176. (b) Miyamoto, S. Chem-Bio Inf. J. 2002, 2, 74–85.
(9) For selected examples of multicomponent approaches in the synthesis
of rhodanine-related structures, see: (a) Takasu, K.; Terauchi, H.; Inoue,
H.; Kim, H.-S.; Wataya, Y.; Ihara, M. J. Comb. Chem. 2003, 5, 211–214.
(b) Anderluh, M.; Jukicˇ, M.; Petricˇ, R. Tetrahedron 2009, 65, 344–350.
(10) For a review on the chemistry of 1,2-diaza-1,3-dienes, see: Attanasi,
O. A.; De Crescentini, L.; Filippone, P.; Mantellini, F.; Santeusanio, S.
ArkiVoc 2002, xi, 274–292.
(5) (a) Boschelli, D. H.; Connor, D. T.; Kuipers, P. J.; Wright, C. D.
Bioorg. Med. Chem. Lett. 1992, 2, 705–708. (b) Whitesitt, C. A.; Simon,
R. L.; Reel, J. K.; Sigmund, S. K.; Philips, M. L.; Shadle, J. K.; Heinz,
L. J.; Koppel, G. A.; Hunden, D. C.; Lifer, S. L.; Berry, D.; Ray, J.; Little,
S. P.; Liu, X.; Marshall, W. S.; Panetta, J. A. Bioorg. Med. Chem. Lett.
1996, 6, 2157–2162. (c) Grant, E. B.; Guiadeen, D.; Baum, E. Z.; Foleno,
B. D.; Jin, H.; Montenegro, D. A.; Nelson, E. A.; Bush, K.; Hlasta, D. J.
Bioorg. Med. Chem. Lett. 2000, 10, 2179–2182. (d) Sing, W. T.; Lee, C. L.;
Yeo, S. L.; Lim, S. P.; Sim, M. M. Bioorg. Med. Chem. Lett. 2001, 11,
91–94. (e) Fujishima, H.; Tsubota, K. Br. J. Ophthalmol. 2002, 86860-863.
(f) Orchard, M. G.; Neuss, J. C.; Galley, C. M. S.; Carr, A.; Porter, D. W.;
Smith, P.; Scopes, D. I. C.; Haydon, D.; Vousden, K.; Stubberfield, C. R.;
Young, K.; Page, M. Bioorg. Med. Chem. Lett. 2004, 14, 3975–3978. (g)
Ahn, J. H.; Kim, S. J.; Park, W. S.; Cho, S. Y.; Ha, J. D.; Kim, S. S.;
Kang, S. K.; Jeong, D. G.; Jung, S.-K.; Lee, S.-H.; Kim, H. M.; Park, S. K.;
Lee, K. H.; Lee, C. W.; Ryu, S. E.; Choi, J.-K. Bioorg. Med. Chem. Lett.
2006, 16, 2996–2999. (h) Irvine, M. W.; Patrick, G. L.; Kewney, J.;
Hastings, S. F.; MacKenzie, S. J. Bioorg. Med. Chem. Lett. 2008, 18, 2032–
2037. (i) Cutshall, N. S.; O’Day, C.; Prezhdo, M. Bioorg. Med. Chem. Lett.
2005, 15, 3374–3379.
(11) For some recent select articles on the chemistry of 1,2-diaza-1,3-
dienes, see: (a) Boeckman, R. K., Jr.; Ge, P.; Reed, J. E. Org. Lett. 2001,
3, 3651–3653. (b) Kramp, G. J.; Kim, M.; Gais, H.-J.; Vermeeren, C. J. Am.
Chem. Soc. 2005, 127, 17910–17920. (c) Palacios, F.; Aparicio, D.; Lo´pez,
Y.; de los Santos, J. M. Tetrahedron 2005, 61, 2815–2830. (d) Attanasi,
O. A.; Davoli, P.; Favi, G.; Filippone, P.; Forni, A.; Moscatelli, G.; Prati,
F. Org. Lett. 2007, 9, 3461–3464. (e) Attanasi, O. A.; Favi, G.; Filippone,
P.; Giorgi, G.; Mantellini, F.; Moscatelli, G.; Spinelli, D. Org. Lett. 2008,
10, 1983–1986. (f) Attanasi, O. A.; Favi, G.; Filippone, P.; Perrulli, F. R.;
Santeusanio, S. Org. Lett. 2009, 11, 309–312.
(12) (a) Buess, C. M. J. Am. Chem. Soc. 1955, 77, 6613–6615. (b)
Salvatore, R. N.; Sahab, S.; Jung, K. W. Tetrahedron Lett. 2001, 42, 2055–
20582. (c) Guo, B.; Ge, Z.; Cheng, T.; Li, R. Synth. Commun. 2001, 31,
3021–3025. (d) Ziyaei-Halimjani, A.; Saidi, M. R. J. Sulfur Chem. 2005,
26, 149–154. (e) Busque, F.; March, P.-D.; Fegueredo, M.; Font, J.;
Gonzales, L. Eur. J. Org. Chem. 2004, 1492–1499. (f) Azizi, N.; Aryanasab,
F.; Torkiyan, L.; Ziyaei, A.; Saidi, M. R. J. Org. Chem. 2006, 71, 3634–
3635. (g) Azizi, N.; Aryanasab, F.; Saidi, M. R. Org. Lett. 2006, 8, 5275–
5277. (h) Azizi, N.; Pourhasan, B.; Aryanasab, F.; Saidi, M. R. Synlett 2007,
1239–1242. (i) Azizi, N.; Ebrahimi, F.; Aakbari, E.; Aryanasab, F.; Saidi,
M. R. Synlett 2007, 2797–2800. (j) Ranu, B. C.; Saha, A.; Banerjee, S.
Eur. J. Org. 2008, 519–523. (k) Xia, S.; Wang, X.; Ge, Z.; Cheng, T.; Li,
R. Tetrahedron 2009, 65, 1005–1009. (l) Han, F.; Ge, Z.; Cheng, T.; Li, R.
Synlett 2009, 648–650.
(6) Bulic, B.; Pickhardt, M.; Khlistunova, I.; Biernat, J.; Mandelkow,
E.-M.; Mandelkow, E.; Waldmann, H. Angew. Chem., Int. Ed. Engl. 2007,
46, 9215–9219.
(7) Forino, M.; Sherida, J.; Wong, T. Y.; Rozanov, D. V.; Savinov, A. Y.;
Li, W.; Fattorusso, R.; Becattini, B.; Orry, A. J.; Jung, D.; Abagyan, R. A.;
Smith, J. W.; Alibek, K.; Liddington, R. C.; Strongin, A. Y.; Pellecchia, M
Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 9499–9504.
(8) Hu, M.; Li, J.; Yao, S. Q. Org. Lett. 2008, 10, 5529–5531.
2266
Org. Lett., Vol. 11, No. 11, 2009