Generation of ortho-Quinone Methides by
p-TsOH on Silica and Their Hetero-Diels-Alder
Reactions with Styrenes
Paratchata Batsomboon,† Wong Phakhodee,‡
Somsak Ruchirawat,†,‡,§ and Poonsakdi Ploypradith*,†,‡
Laboratory of Medicinal Chemistry, Chulabhorn Research
Institute, Program in Chemical Biology, Chulabhorn
Graduate Institute, VipaVadee-Rangsit Highway,
Bangkok, Thailand 10210, and Program on Research and
DeVelopment of Synthetic Drugs, Institute of Science and
Technology for Research and DeVelopment, Mahidol
UniVersity, Salaya Campus, Nakhon Pathom, Thailand
FIGURE 1. Eriodictyol (1), hesperetin (2), selective ERꢀ agonists
(3-9), and sideroxylonal (10).
ReceiVed March 6, 2009
anxiolytic, and myorelaxant properties.1 Eriodictyol (1) and
hesperitin (2) are antioxidant 2-arylchromanone natural products
(Figure 1). In addition, some synthetic 2-arylchromans (3-9)
have been developed as selective estrogen receptor ꢀ (ERꢀ)
agonists (SERBAs).2,3 However, some of the steps in these
synthetic routes were low-yielding, and the overall processes
involved many chemical steps. Moreover, synthesis of com-
pounds with substituents at the 4-position, such as sideroxylonal
A (10), involved the hetero-Diels-Alder reaction of the ortho-
quinone methide (o-QM).4
The hetero-Diels-Alder reactions have been employed in a
number of syntheses to construct the heteroatom-containing ring
systems.5 Reactions between the o-QMs as the heterodienes and
the properly activated olefins as the dienophiles furnish the
benzopyran as well as the spiroketal frameworks.6 Among the
most commonly used procedures to generate the highly reactive
o-QMs are thermal and base initiations.7 These procedures
2-Arylchromans were readily prepared from the hetero-
Diels-Alder reactions of styrenes with the ortho-quinone
methides (o-QMs) which, in turn, were generated by treating
the MOM-protected benzylacetate derivatives with p-TsOH
immobilized on silica (PTS-Si) in toluene under mild
conditions (0 °C to rt). The corresponding chromans were
obtained in moderate to excellent yields (42-97%) and in
moderate to excellent diastereoselectivity (up to >99:1).
(2) (a) Ullrich, J. W.; Miller, C. P. Expert Opin. Ther. Pat. 2006, 16, 559–
572. (b) Wallace, O. B.; Richardson, T. I.; Dodge, J. A. Curr. Top. Med. Chem.
2003, 3, 1663–1680. (c) Miller, C. P. Curr. Pharm. Des. 2002, 8, 2089–2111.
(3) (a) Norman, B. H.; Dodge, J. A.; Richardson, T. I.; Borromeo, T. S.;
Lugar, C. W.; Jones, S. A.; Chen, K.; Wang, Y.; Durst, G. L.; Barr, R. J.;
Montrose-Rafizadeh, C.; Osborne, H. E.; Amos, R. M.; Guo, S.; Boodhoo, A.;
Krishnan, V. J. Med. Chem. 2006, 49, 6155–6157. (b) Richardson, T. I.; Norman,
B. H.; Lugar, C. W.; Jones, S. A.; Wang, Y.; Durbin, J. D.; Krishnan, V.; Dodge,
J. A. Bioorg. Med. Chem. Lett. 2007, 17, 3570–3574. (c) Richardson, T. I.; Dodge,
J. A.; Durst, G. L.; Pfeifer, L. A.; Shah, J.; Wang, Y.; Durbin, J. D.; Krishnan,
V.; Norman, B. H. Bioorg. Med. Chem. Lett. 2007, 17, 4824–4828. (d) Norman,
B. H.; Richardson, T. I.; Dodge, J. A.; Pfeifer, L. A.; Durst, G. L.; Wang, Y.;
Durbin, J. D.; Krishnan, V.; Dinn, S. R.; Liu, S.; Reilly, J. E.; Ryter, K. T.
Bioorg. Med. Chem. Lett. 2007, 17, 5082–5085. (e) Richardson, T. I.; Dodge,
J. A.; Wang, Y.; Durbin, J. D.; Krishnan, V.; Norman, B. H. Bioorg. Med. Chem.
Lett. 2007, 17, 5563–5566.
The chroman, or the benzopyran, can be found as the core
structure in a number of natural products such as those in the
flavonoid families, which have been shown to exhibit antioxi-
dant, antiallergic, anti-inflammatory, antimicrobial, anticancer,
(4) Tatsuta, K.; Tamura, T.; Mase, T. Tetrahedron Lett. 1999, 40, 1925–
1928.
(5) (a) Bray, C. D. Org. Biomol. Chem. 2008, 6, 2815–2819. (b) Kuboki,
A.; Yamamoto, T.; Taira, M.; Arishige, T.; Konishi, R.; Hamabata, M.;
Shirahama, M.; Hiramatsu, T.; Kuyama, K.; Ohira, S. Tetrahedron Lett. 2008,
49, 2558–2561.
(6) (a) Pettigrew, J. D.; Bexrud, J. A.; Freeman, R. P.; Wilson, P. D.
Heterocycles 2004, 62, 445–452. (b) Adlington, R. M.; Baldwin, J. E.; Mayweg,
A. V. W.; Pritchard, G. J. Org. Lett. 2002, 4, 3009–3011. (c) Zhou, G.; Zhu, J.;
Xie, Z.; Li, Y. Org. Lett. 2008, 10, 721–724. (d) Marsini, M. A.; Huang, Y.;
Lindsey, C. C.; Wu, K.-L.; Pettus, T. R. R. Org. Lett. 2008, 10, 1477–1480. (e)
El Kaim, L.; Grimaud, L.; Oble, J. Org. Biomol. Chem. 2006, 4, 3410–3413. (f)
Rosenau, T.; Netscher, T.; Ebner, G.; Kosma, P. Synlett 2005, 243–246.
† Chulabhorn Graduate Institute.
‡ Chulabhorn Research Institute.
§ Mahidol University.
(1) (a) Zaloni, P.; Avallone, R.; Baraldi, M. Fitoterapia 2000, 71, S117–
S123. (b) Welton, A. F.; Tobias, L. D.; Fiedler-Nagy, C.; Anderson, W.; Hope,
W.; Meyers, K.; Coffey, J. W. In Plant FlaVonoids in Biology and Medicine;
Cody, V., Middleton, E., Jr., Harborne, J. B., Eds.; Alan R. Liss Inc.: New York,
1986; pp 1-592. (c) Hirano, T.; Oka, K.; Akiba, M. Res. Commun. Chem. Pathol.
Pharmacol. 1989, 64, 69–78. (d) Cassady, J. M.; Baird, W. H.; Chang, C.-J. J.
Nat. Prod. 1990, 53, 23–41. (e) Medina, J. H.; Vioila, H.; Wolfman, C.; Marder,
M.; Wasowski, C.; Calvo, D.; Paladini, A. C. Neurochem. Res. 1997, 22, 419–
425.
10.1021/jo900504y CCC: $40.75
Published on Web 04/22/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 4009–4012 4009