loading capacity (mmol functionality per g of resin) of
commonly used scavenging resins.
Scheme 1a
To overcome these limitations, chemical tagging has
recently been employed to facilitate impurity removal.7 The
hallmark of this approach is the inherent ability of a chemical
tag to phase-switch or phase-traffic reagents, products, and
impurities from one media to another due to the unique
“functionality” that is contained in the tag, thus enabling
efficient purification. The salient feature that differentiates
“chemical tagging” from supported synthesis/reagents is that
the reactivity of the reagent is not altered or compromised
in the process. Successful examples in this class include
fluorous tags,8 sequestration enabling reagents,6a,9 precipi-
tons,10 metal-chelated tagging,11 PEG tags for soluble-
supported scavenging,12 and Barrett’s norbornenyl-tagged
annihilation reagent.13
Recently, Barrett has taken a ring-opening metathesis
polymerization (ROMP) approach to impurity removal with
the development of ROMPgel technology14 utilizing the
Grubbs benzylidene catalyst [(PCy3)2(Cl)2RudCHPh]. Our
interest in the development of purification protocols based
on tagged reagents9 and ROMP15 has led us to develop a
new chemical tagging approach that we have termed
scavenge-ROMP-filter. This new method utilizes 5-nor-
bornene-2-methanol (1)16 as a soluble electrophilic scavenger.
This method offers maximum load benefits, is compatible
with traditional reaction monitoring methods, and retains the
favorable reaction kinetics associated with solution-phase
synthesis.
a Reagents and conditions: method A, (i) TsNCO, CH2Cl2, 0
°C to rt, then 1, 0 °C to rt, (ii) 1 mol % of 11, CH2Cl2, reflux
(20-45 min), (iii) Et2O/hexane (4:1), filter; method B, (i) PhNCO,
toluene, reflux, then 1, reflux, (ii) 1 mol % of 11, CH2Cl2, reflux
(20-45 min), (iii) MeOH, filter thru Celite; method C, (i) PhCOCl,
Et3N, CH2Cl2, rt or reflux, then 1, reflux, (ii) 1 mol % of 11, CH2Cl2,
reflux (20-45 min), (iii) Et2O/hexane (4:1), filter thru Celite or
SiO2 plug.
p-toluenesulfonyl isocyanate, phenyl isocyanate, and benzoyl
chloride. Subsequent in situ ROM polymerization using 1
mol % of the Grubbs saturated imidazole catalyst (IMesH2)-
(PCy3)(Cl)2RudCHPh (11)17 generates differentially soluble
polymers18 8-10 containing the tagged electrophiles 5-7.
The products 2-4 (Table 1) are readily isolated in solution
phase away from the in situ polymerized species 8-10 via
As shown in Scheme 1, the soluble scavenging alcohol 1
is utilized to capture excess electrophilic reagents such as
(7) Flynn, D. L.; Devraj, R. V.; Naing, W.; Parlow, J. J.; Weidner, J. J.;
Yang, S. Med. Chem. Res. 1998, 8, 219-243.
(8) (a) Curran, D. P.; Hadida, S. J. Am. Chem. Soc. 1996, 118, 2531-
2532. (b) Studer, A.; Curran, D. P. Tetrahedron 1997, 53, 6681-6696. (c)
Curran, D. P. Med. Res. ReV. 1999, 19, 432-438. (d) Curran, D. P. Synlett
2001, 1488-1496.
Table 1. Formation of Products 2-4a via
Scavenge-ROMP-Filterb
entry
nucleophile
electrophilea pdt yield (%) purity (%)
(9) (a) Parlow, J. J.; Naing, W.; South, M. S.; Flynn, D. L. Tetrahedron
Lett. 1997, 38, 7959-7962. (b) Starkey, G. W.; Parlow, J. J.; Flynn, D. L.
Bioorg. Med. Chem. Lett. 1998, 8, 2385-2390.
1
2
3
t-BuOH
BnOH
BnNH2
C6H11NH2
TolSO2NCO 2a
TolSO2NCO 2b
TolSO2NCO 2c
TolSO2NCO 2d
98
94
99
97
99
90
99
78
99
99
99
99
99
99
94
98
99
99
>90c
>90c
>90c
>90c
>90c
>90c
97d
(10) (a) Bosanac, T.; Wilcox, C. S. Chem. Commun. 2001, 1618-1619.
(b) Bosanac, T.; Wilcox, C. S. Tetrahedron Lett. 2001, 42, 4309-4312.
(c) Bosanac, T.; Yang, J.; Wilcox, C. S. Angew. Chem., Int. Ed. 2001, 40,
1875-1879. (d) Bosanac, T.; Wilcox, C. S. J. Am. Chem. Soc. 2002, 124,
4194-4195.
(11) Ley, S. V.; Massi, A.; Rodriguez, F.; Horwell, D. C.; Lewthwaite,
R. A.; Pritchard, M. C.; Reid, A. M. Angew. Chem., Int. Ed. 2001, 40,
1053-1055.
(12) Falchi, A.; Taddei, M. Org. Lett. 2000, 2, 3429-3431.
(13) (a) Barrett, A. G. M.; Roberts, R. S.; Schro¨der, J. Org. Lett. 2000,
2, 2999-3001. (b) For the initial paper on impurity annihilation, see:
Barrett, A. G. M.; Smith, M. L.; Zecri, F. J. Chem. Commun. 1998, 2317-
2318.
(14) (a) Barrett, A. G. M.; Cramp, S. M.; Roberts, R. S.; Zecri, F. J.
Org. Lett. 1999, 1, 579-582. (b) Barrett, A. G. M.; Cramp, S. M.; Roberts,
R. S.; Zecri, F. J. Org. Lett. 2000, 2, 261-264. (c) Arnauld, T.; Barrett, A.
G. M.; Cramp, S. M.; Roberts, R. S.; Ze´cri, F. J. Org. Lett. 2000, 2, 2663-
2666. (d) Barrett, A. G. M.; Cramp, S. M.; Hennessy, A. J.; Procopiou, P.
A.; Roberts, R. S. Org. Lett. 2001, 3, 271-273. (e) Arnauld, T.; Barrett,
A. G. M.; Seifried, R. Tetrahedron Lett. 2001, 42, 7899-7901. (f) Arnauld,
T.; Barrett, A. G. M.; Hopkins, B. T.; Ze´cri, F. J. Tetrahedron Lett. 2001,
42, 8215-8217.
(15) For the use of capture-ROMP-release, see: Harned, A. M.;
Hanson, P. R. Org. Lett. 2002, 3, 1007-1010.
(16) Available from Aldrich Chemical Co. as a ∼3:1 mixture of endo:
exo diastereomers. We prepared 1 as a ∼10:1 mixture of endo:exo
diastereomers via AlCl3-catalyzed Diels-Alder reaction of cyclopentadiene
with methyl acrylate (benzene, 50 °C) followed by LiAlH4 reduction.
4
5
6
7
8
PhCH2CH2NH2 TolSO2NCO 2e
n-BuNH2 TolSO2NCO 2f
MeOPhCH2OH PhNCO
3a
3b
3c
3d
3e
4a
4b
4c
4d
4e
4f
geraniol
Bn2NH
menthol
PhNCO
PhNCO
PhNCO
98d
9
81d
10
11
12
13
14
15
16
17
18
96d
1-(4H)naphthol PhNCO
84d
BnOH
PhCOCl
PhCOCl
PhCOCl
PhCOCl
PhCOCl
PhCOCl
PhCOCl
94d
C6H11OH
geraniol
phenol
menthol
morpholine
Bn2NH
84d
89d
90d
87d
84d
4g
95d
a Reactions performed with an excess of electrophile as outlined in
Scheme 1. b Polymerization conducted with 1 mol % of Grubbs catalyst
1
11. c Determined by H NMR (no polymer present). d Determined by GC
and confirmed by 1H NMR (no polymer present, see Figure 1 and
supplementary spectra).
1848
Org. Lett., Vol. 4, No. 11, 2002