A. Noor, R. Kempe
SHORT COMMUNICATION
Nikiforov, P. Credson, S. Gambarotta, I. Korobkov, P. H. M.
Budzelaar, Organometallics 2007, 26, 48–55.
For review articles on aminopyridinato ligands see: a) R.
Kempe, Angew. Chem. 2000, 112, 478–504; Angew. Chem. Int.
Ed. 2000, 39, 468–493; b) R. Kempe, H. Noss, T. Irrgang, J.
Organomet. Chem. 2002, 647, 12–20; c) R. Kempe, Eur. J. Inorg.
Chem. 2003, 791–803.
a) N. M. Scott, T. Schareina, O. Tok, R. Kempe, Eur. J. Inorg.
Chem. 2004, 3297–3304; b) N. M. Scott, R. Kempe, Eur. J. In-
org. Chem. 2005, 1319–1324; c) W. P. Kretschmer, A. Meetsma,
B. Hessen, T. Schmalz, S. Qayyum, R. Kempe, Chem. Eur. J.
2006, 12, 8969–8978; d) W. P. Kretschmer, A. Meetsma, B.
Hessen, N. M. Scott, S. Qayyum, R. Kempe, Z. Anorg. Allg.
Chem. 2006, 632, 1936–1938; e) W. P. Kretschmer, B. Hessen,
A. Noor, N. M. Scott, R. Kempe, J. Organomet. Chem. 2007,
692, 4569–4579; f) S. M. Guillaume, M. Schappacher, N. M.
Scott, R. Kempe, J. Polym. Sci., Part A: Polym. Chem. 2007,
45, 3611–3619; g) A. M. Dietel, O. Tok, R. Kempe, Eur. J. In-
org. Chem. 2007, 4583–4586; h) R. Kempe, Chem. Eur. J. 2007,
13, 2764–2773; i) G. G. Skvortsov, G. K. Fukin, A. A. Trifonov,
A. Noor, C. Doring, R. Kempe, Organometallics 2007, 26,
5770–5773; j) S. Qayyum, K. Haberland, C. M. Forsyth, P. C.
Junk, G. B. Deacon, R. Kempe, Eur. J. Inorg. Chem. 2008, 557–
562.
afford red crystals of 4; yield 0.186 g (80.4%). C45H66N4OSi2Ti·0.5
hexane (826.16): calcd. C 69.78, H 8.91, N 6.78; found C 70.19, H
8.87, N 6.95. 1H NMR (400 MHz, C6D6): δ = 0.26 (s, 9 H, -SiMe3),
0.42 (s, 9 H, -SiMe3), 0.72 (d, J = 6.6 Hz, 6 H, H15,16,17,18), 0.87 (d,
J = 6.6 Hz, 3 H, H15,16,17,18), 1.12 (s, 3 H, CH3), 1.18 (d, J = 6.6 Hz,
3 H, H15,16,17,18), 1.20 (d, J = 6.6 Hz, 3 H, H15,16,17,18), 1.28 (s, 3
H, HCH3), 1.33 (d, J = 6.9 Hz, 3 H, H15/16/17/18), 1.50 (d, J = 6.9 Hz,
3 H, H15/16/17/18), 2.22 (sept, J = 6.6 Hz, 1 H, H13/14), 2.35 (sept, J
= 6.6 Hz, 1 H, H13/14), 3.87 (sept, J = 6.9 Hz, 1 H, H13/14), 4.06
(sept, J = 6.9 Hz, 1 H, H13/14), 5.60 (d, J = 8.5 Hz, 1 H, H3), 5.73
(d, J = 8.7 Hz, 1 H, H3), 5.90 (t, J = 6.4 Hz, 1 H, H5), 6.06 (t, J =
6.0 Hz, 1 H, H5), 6.72 (m, 1 H, H4), 6.87 (m, 1 H, H4), 7.04–7.31
(m, 6 H, H9,10,11), 7.69 (dd, 1 H, H6), 8.20 (dd, 1 H, H6) ppm.
13C NMR (100 MHz, C6D6): δ = 4.5 (-SiMe3), 6.0 (-SiMe3), 25.0
(C15,16,17,18), 25.2 (C15,16,17,18), 25.7 (C15,16,17,18), 26.3 (C15,16,17,18),
27.3 (C15,16/17,18), 27.6 (C15,16/17,18), 28.2 (C13/14), 28.4 (C13/14), 28.6
(C13/14), 28.7 (C13/14), 29.2 (CCH3), 31.9 (CCH3), 92.8 (CO), 106.0
(C3), 107.3 (C3), 108.7 (C5), 111.4 (C5), 123.2 (C9/11), 124.0 (C9/11),
124.6 (C9/11), 125.4 (C9/11), 125.7 (C9/11), 126.6 (C9/11), 139.9 (C8,12),
140.8 (C8,12), 143.7 (C4), 143.9 (C4), 144.6 (C10), 144.7 (C7), 145.1
(C7), 145.4 (C6), 145.7 (C6), 170.2 (C2), 173.0 (Ti-C=C*), 186.9
(Ti-C*=C) ppm.
[4]
[5]
[6]
a) M. Polamo, M. Talja, A. J. Piironen, Z. Kristallogr. NCS
2005, 220, 41–42; b) A. Noor, W. Kretschmer, R. Kempe, Eur.
J. Inorg. Chem. 2006, 2683–2689.
[7]
[8]
E. Benzing, W. Kornicker, Chem. Ber. 1961, 94, 2263–2267.
M. Talja, M. Klinga, M. Polamo, E. Aitola, M. Leskelä, Inorg.
Chim. Acta 2005, 358, 1061–1067.
Acknowledgments
[9]
M. Talja, T. Luhtanen, M. Polamo, M. Klinga, T. A. Pak-
kanen, M. Leskelä, Inorganica Chimica Acta in press. doi:
10.1016/j.ica.2007.11.028.
We thank Christian Döring and Germund Glatz for assistance in
performing the X-ray single-crystal structure analysis.
nd
[10]
[11]
[12]
V. B. Shur, S. Z. Bernadyuk, V. V. Burlakov, M. E. Vol’pin, II
All-Union Conf. Organomet. Chem. Abs., Gorky, 1982, 178.
V. B. Shur, V. V. Burlakov, M. E. Vol’pin, J. Organomet. Chem.
1988, 347, 77–83.
[1] U. Rosenthal, V. V. Burlakov, Organometallic Chemistry of Tit-
anocene and Zirconocene Complexes with Bis(trimethylsilyl)
acetylene as the Basis for Applications in Organic Synthesis, in:
Titanium and Zirconium in Organic Synthesis (Ed.: I. Marek),
Wiley-VCH, New York, 2002, pp. 355–389.
Selected details of the X-ray crystal structure analyses for
1·2C7H8: space group: P2(1)2(1)2(1), a = 32.213(3) Å, b =
9.2810(10) Å, c = 14.6820(18) Å; V = 4389.5(8) Å3, z = 4, re-
flections collected/unique/observed: 38832/7336/3110, param-
eters: 498, R (obs.) = 0.0787, wR2 (all data) = 0.1991, wR2
(obs.) = 0.1711; 2: space group: P3(2)21, a = 19.4919(14) Å, b
= 19.4919(15) Å, c = 9.4918(7) Å; V = 3123.1(4) Å3, z = 3,
reflections collected/unique/observed: 29109/2736/2231, pa-
rameters: 229, R (obs.) = 0.0741, wR2 (all data) = 0.1522, wR2
(obs.) = 0.1444; 3: space group: P2(1)/c, a = 13.3860 (11) Å, b
= 13.3220 (11) Å, c = 25.739 (2) Å; β = 99.441(7) °, V = 4527.8
(7) Å3, z = 4, reflections collected/unique/observed: 8598/8598/
3463, parameters: 523, R (obs.) = 0.1059, wR2 (all data) =
[2] a) A. Ohff, S. Pulst, C. Lefeber, N. Peulecke, P. Arndt, V. V.
Burlakov, U. Rosenthal, Synlett 1996, 111–118; b) U. Rosen-
thal, P.-M. Pellny, F. G. Kirchbauer, V. V. Burlakov, Acc. Chem.
Res. 2000, 33, 119–129; c) U. Rosenthal, V. V. Burlakov, P.
Arndt, W. Baumann, A. Spannenberg, Organometallics 2003,
22, 884–900; d) U. Rosenthal, P. Arndt, W. Baumann, V. V.
Burlakov, A. Spannenberg, J. Organomet. Chem. 2003, 670, 84–
96; e) U. Rosenthal, Angew. Chem. 2003, 115, 1838–1842; An-
gew. Chem. Int. Ed. 2003, 42, 1794–1798; f) A. Spannenberg,
P. Arndt, W. Baumann, U. Rosenthal, J. Organomet. Chem.
2003, 683, 261–266; g) U. Rosenthal, Angew. Chem. 2004, 116,
3972–3977; Angew. Chem. Int. Ed. 2004, 43, 3882–3887; h) U.
Rosenthal, V. V. Burlakov, P. Arndt, W. Baumann, A. Spannen-
berg, V. B. Shur, Eur. J. Inorg. Chem. 2004, 4739–4749; i) U.
Rosenthal, V. V. Burlakov, P. Arndt, W. Baumann, A. Spannen-
berg, Organometallics 2005; 24, 456–471; j) U. Rosenthal, in
Acetylene Chemistry II. Chemistry, Biology, and Material Sci-
ence (Eds.: F. Diederich, P. J. Stang, R. R. Tykwinski), Wiley-
VCH, Weinheim, 2003, chapter 4, p. 139–171.
[3] a) L. K. Woo, J. A. Hays, R. A. Jacobson, C. L. Day, Organo-
metallics 1991, 10, 2102–2104; b) Y. Gao, K. Harada, F. Sato,
Tetrahedron Lett. 1997, 36, 5913–5916; c) E. S. Johnson, G. J.
Balaich, P. E. Fanwick, I. P. Rothwell, J. Am. Chem. Soc. 1997,
119, 11086–11087; d) P. N. Riley, P. E. Fanwick, I. P. Rothwell,
Chem. Commun. 1997, 1109–1110; e) M. Horacek, J. Hiller, U.
Thewalt, P. Stepnicka, K. Mach, J. Organomet. Chem. 1998,
571, 77–82; f) Jinyuan Chen, I. A. Guzei, L. K. Woo, Inorg.
Chem. 2000, 39, 3715–3717; g) P. N. Riley, P. E. Fanwick, I. P.
Rothwell, J. Chem. Soc., Dalton Trans. 2001, 181–186; h) B. C.
Bailey, Hongjun Fan, J. C. Huffman, Mu-Hyun Baik, D. J.
Mindiola, J. Am. Chem. Soc. 2006, 128, 6798–6799; i) G. B.
0.2251, wR2 (obs.) = 0.1781; 4: space group: P1, a =
¯
10.4280(8) Å, b = 13.532(11) Å, c = 18.1300(15) Å; α =
95.933(6), β = 106.305(6), γ = 101.491(6) °, V = 2371.5(3) Å3,
z = 2, reflections collected/unique/observed: 8950/8950/3513,
parameters: 511, R (obs.) = 0.0425, wR2 (all data) = 0.0805,
wR2 (obs.) = 0.0692; X-ray crystal structure analysis was car-
ried out with a STOE IPDS II diffractometer equipped with
an Oxford Cryostream low-temperature unit. CCDC-676560
(for 1), -676561 (for 2), -676562 (for 3) and -676563 (for 4)
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_r-
equest/cif.
[13]
[14]
[15]
S. Deeken, G. Motz, R. Kempe, Z. Anorg. Allg. Chem. 2007,
633, 320–325.
F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G.
Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2 1987, S1.
a) V. V. Burlakov, A. V. Polyakov, A. I. Yanovsky, Yu. T.
Struchkov, V. B. Shur, M. E. VolЈpin, J. Organomet. Chem.
1994, 476, 197–206; b) G. Schmid, U. Thewalt, M. Polasek, K.
2380
www.eurjic.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2008, 2377–2381