T.-G. Peck, Y.-H. Lai / Tetrahedron 65 (2009) 3664–3667
3667
was chromatographed on silica gel using a mixture of dichloro-
methane and hexane (3:1) as the eluant. Eluted first was the azir-
idine derivative 7 (0.56 g, 20%), mp 130–136 ꢁC. 1H NMR (300 MHz,
dichloromethane (1:1) as the eluant, the fractions found to contain
the product were combined and evaporated to give 9, 2.55 g (54%).
A sample recrystallized from cyclohexane/benzene afforded color-
CDCl3)
d
7.0–8.0 (m, 16H, ArH and CH]CH), 6.70 (br d, J 8 Hz, 1H,
less crystals of 9, mp 170–172 ꢁC. 1H NMR
d 7.1–8.2 (m, 12H, ArH),
CH]CH), 2.32, 2.03 (s, total 6H, CH3); IR (KBr) 3235 (br),1640,1505,
1470, 1425, 1372, 1295 (br), 1270 (br), 1000, 780, 748, 708 cmꢀ1; MS
m/z 495 (Mꢂþ, 65),105 (100), 77 (60). Anal. Calcd for C31H23ONCl2: C,
75.00; H, 4.67; N, 2.82%. Found: C, 74.27; H, 4.46; N, 3.26%. Mr calcd
for C31H23ONCl2: 495.1156; found (MS): 495.1156. Eluted next was
the desired product 6, 0.68 g (23%). Recrystallization of a sample
from chloroform/benzene gave colorless crystals of 6, mp 248–
254 ꢁC. 1H NMR (300 MHz, DMSO-d6/CDCl3), refer to discussion in
the text; IR (KBr) 3450, 3400, 3140 (br), 2920, 2840, 1700, 1500,
1480, 1420, 1300, 1285, 1100, 1050, 1020, 1000, 800, 760, 730, 710,
625 cmꢀ1; MS m/z 513 (Mꢂþ, 1), 496 (1), 408 (52), 345 (28), 254 (10),
153 (38),105 (100), 77 (60), 28 (69). Anal. Calcd for C31H25O2NCl2: C,
72.38; H, 4.90; N, 2.72%. Found: C, 72.37; H, 4.74; N, 2.78%.
2.44, 2.29 (s, total 2H, CH3), 2.39, 2.08 (s, total 2H, CH3); IR (KBr)
2210, 1430, 1375, 1260, 1230, 820, 800, 740, 720 cmꢀ1; MS m/z 358
(Mꢂþ, 100), 343 (30), 240 (22). Anal. Calcd for C26H18N2: C, 87.12; H,
5.06; N, 7.82%. Found: C, 87.07; H, 5.10; N, 7.82%.
Acknowledgements
This work was supported by the Singapore Ministry of Educa-
tion AcRF Tier 1 Grant R-143-000-248-112. The authors thank the
staff at the Chemical, Molecular and Materials Analysis Center,
Department of Chemistry, National University of Singapore, for
their technical assistance.
References and notes
4.2. 1,2-(3-Chloro-2-methylphenyl)naphthalene 8
ꢀ
1. (a) Voronenkov, V. V.; Osokin, Y. G. Russ. Chem. Rev. 1972, 41, 616–629; (b) Oki,
M. Angew. Chem., Int. Ed. Engl. 1976, 15, 87–93; (c) Fo¨rster, H.; Vo¨gtle, F. Angew.
Chem., Int. Ed. Engl. 1977, 16, 429–441.
To a solution of 6 (4.00 g, 7.78 mmol) in glacial acetic acid
(200 mL) was added finely powdered zinc dust (15.27 g, 233 mmol)
in three equal batches at intervals followed by catalytic amount of
a 2% aqueous solution of chloroplatinic acid was added. Concen-
trated hydrochloric acid (60 mL) was then added slowly. The re-
action mixture was refluxed for 16 h and thereafter, it was poured
into water and extracted with dichloromethane. The organic extract
was washed with water, aqueous sodium bicarbonate solution,
dried, and evaporated. The crude product was chromatographed on
silica gel using dichloromethane/hexane (1:1) as the eluant. The
first major component collected was the desired product 8, 0.74 g
(24%). It was recrystallized from cyclohexane to give colorless
2. (a) Honda, K.; Furukawa, Y. J. Mol. Struct. 2005, 735, 11–19; (b) Zhuravlev, K. K.;
McCluskey, M. D. J. Chem. Phys. 2004, 120, 1841–1845; (c) Johnston, M. B.; Herz,
L. M.; Khan, A. L. T.; Kohler, A.; Davies, A. G.; Linfield, E. H. Chem. Phys. Lett.
2003, 377, 256–262; (d) Zhuravlev, K. K.; McCluskey, M. D. J. Chem. Phys. 2002,
117, 3748–3752; (e) Zhuravlev, K. K.; McCluskey, M. D. J. Chem. Phys. 2001, 114,
5465–5467; (f) Barichd, H.; Pugmire, R. J.; Grant, D. M.; Iuliucci, R. J. J. Phys.
Chem. A 2001, 105, 6780–6784; (g) Szymoszek, A.; Koll, A. Mol. Simul. 2001, 26,
381–394; (h) Saito, K.; Yamamura, Y.; Sorai, M. Bull. Chem. Soc. Jpn. 2000, 73,
2713–2718; (i) Szymoszek, A.; Koll, A. Chem. Phys. Lett. 2000, 324, 115–121.
3. (a) Glaser, R.; Knotts, N.; Wu, Z. Y.; Barnes, C. L. Cryst. Growth Des. 2006, 6, 235–
240; (b) Nather, C.; Jess, I.; Havlas, Z.; Bolte, M.; Nagel, N.; Nick, S. Solid State Sci.
2002, 4, 859–871.
4. Koch, N.; Heimel, G.; Wu, J. S.; Zojer, E.; Johnson, R. L.; Bredas, J. L.; Mullen, K.;
Rabe, J. P. Chem. Phys. Lett. 2005, 413, 390–395.
5. Rabias, I.; Langlois, C.; Provata, A.; Howlin, B. J.; Theodorou, D. N. Polymer 2002,
43, 185–193.
crystals of 8, mp 108–110 ꢁC. 1H NMR
d 6.8–8.2 (m, 12H, ArH), 2.21,
2.07 (s, total 2H, CH3), 2.15, 1.87 (s, total 6H, CH3); IR (KBr) 3082,
2960, 2925, 2860, 1590, 1560, 1500, 1430, 1375, 1330, 1260, 1210,
1190, 1145, 1112, 1070, 1020, 918, 870, 825, 728, 750, 718, 690,
648 cmꢀ1; MS m/z 376 (Mꢂþ, 100), 342 (25), 326 (10), 289 (22), 215
(33), 144 (15), 85 (14), 57 (34), 43 (27). Anal. Calcd for C24H18Cl2: C,
76.59; H, 4.79%. Found: C, 76.24; H, 4.67%. Eluted next was the
aziridine 7 (0.69 g; 25%) identical to the sample obtained earlier.
6. (a) Gust, D. J. Am. Chem. Soc. 1977, 99, 6980–6982; (b) Gust, D.; Patton, A. J. Am.
Chem. Soc. 1978, 100, 8175–8181; (c) Patton, A.; Dirks, J. W.; Gust, D. J. Org. Chem.
1979, 44, 4749–4752.
7. Clough, R. L.; Roberts, J. D. J. Am. Chem. Soc. 1976, 98, 1018–1020.
8. (a) Zapka, W.; Brackmann, U. Appl. Phys. A 1979, 20, 283–286; (b) Zhang, F.-G.;
Scha¨fer, F. P. Appl. Phys. B 1981, 26, 211–212; (c) Gryczynski, I.; Piszczek, G.;
Gryczynski, Z.; Lakowicz, J. R. J. Phys. Chem. A 2002, 106, 754–759; (d) Biradar,
D. S.; Thipperudrappa, J.; Hanagodimath, S. M. J. Lumin. 2007, 126, 339–346.
9. Lunazzi, L.; Mazzanti, A.; Minzoni, M.; Anderson, J. E. Org. Lett. 2005, 7, 1291–
1294.
10. Adams, R.; Stewart, J. M. J. Am. Chem. Soc. 1952, 74, 5876–5880.
11. Mustafa, A.; Kamel, M. J. Am. Chem. Soc. 1955, 77, 5630–5633.
12. (a) Mitchell, R. H.; Yan, J. S. H. Can. J. Chem. 1980, 58, 2584–2587; (b) Lai, Y.-H.;
Chen, P. J. Chem. Soc., Perkin Trans. 2 1989, 1665–1670.
13. Ward, V. R.; Cooper, M. A.; Ward, A. D. J. Chem. Soc., Perkin Trans. 1 2001, 944–
945.
4.3. 1,2-(3-Cyano-2-methylphenyl)naphthalene 9
Copper(I) cyanide (11.68 g, 130.4 mmol) was added to a solution
of 8 (4.92 g, 13.04 mmol) in N-methyl-2-pyrrolidinone (150 mL).
The reaction mixture was heated under reflux for 16 h. It was
cooled to about 60 ꢁC and another batch of copper(I) cyanide
(11.68 g, 130.4 mmol) was added. The reaction mixture was further
refluxed for another 16 h. It was cooled to about 100 ꢁC and poured
into concentrated NH3/ice (1:1; 300 mL). After mixing thoroughly
for 15 min, the mixture was filtered. The residue was successively
extracted with dichloromethane and filtered. The organic fractions
were combined and evaporated to give a brown residue. The resi-
due was redissolved in ether and repeatedly washed with dil. HCl
(1 M). The ether extract was dried and evaporated to give the crude
product. After column chromatography on silica gel with hexane/
14. Yeung, Y.-Y.; Gao, X.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 9644–9645.
15. New, M. S. Org. Synth. 1955, Coll. Vol. 3, 631–632.
16. (a) Lai, Y.-H. J. Chem. Soc., Perkin Trans. 2 1986, 1667–1670; (b) Marriott, P. J.; Lai,
Y.-H. J. Chromatogr. 1988, 447, 29–41; (c) Lai, Y.-H.; Marriott, P. J.; Tan, B.-C. Aust.
J. Chem. 1985, 38, 307–314.
ꢀ
17. Oki, M. Applications of Dynamic NMR Spectroscopy to Organic Chemistry; VPH:
Deerfield Beach, FL, 1985.
18. Gutowsky, H. S.; Holm, C. H. J. Chem. Phys. 1956, 25, 1228–1234.
19. (a) Anderson, J. E.; Doecke, C. W.; Pearson, H. J. Chem. Soc., Perkin Trans. 2 1976,
336–341; (b) Mannschreck, A.; Ernst, L. Chem. Ber. 1971, 104, 228–247; (c)
Mallory, F. B.; Mallory, C. W.; Fedarko, M.-C. J. Am. Chem. Soc. 1974, 96, 3536–
3542; (d) Charton, M. J. Am. Chem. Soc. 1969, 91, 615–623; (e) Anderson, J. E.;
Pearson, H. Tetrahedron Lett. 1972, 2779–2780.