1114 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 5
Letters
Department, Food and Agriculture Organization of the United Nations:
Rome, 2004.
(4) Stewart, T. B. Economics of endoparasitism of pigs. PigNews Inf. 2001,
22, 29N–30N.
(5) Geary, T. G.; Conder, G. A.; Bishop, B. The changing landscape of
antiparasitic drug discovery for veterinary medicine. Trends Parasitol.
2004, 20, 449–455.
(6) Coles, G. C. The future of veterinary parasitology. Vet. Parasitol. 2001,
98, 31–39.
(7) Mc Kellar, Q. A.; Scott, E. W. The benzimidazole anthelmintic agents.
A review. J. Vet. Pharmacol. Ther. 1990, 13, 223–247.
(8) Ettmayer, P.; Amidon, G. L.; Clement, B.; Testa, B. Lessons learned
from marketed and investigational prodrugs. J. Med. Chem. 2004, 47,
1–12.
(9) Hernández-Luis, F.; Hernández-Campos, A.; Yépez-Mulia, L.; Ce-
dillob, R.; Castilloa, R. Synthesis and hydrolytic stability studies of
albendazole carrier prodrugs. Bioorg. Med. Chem. Lett. 2001, 11,
1359–1362.
(10) Dransch, G.; Mildenberger, H.; Düwel, D.; Kirsch, R. Substituted
2-Alkoxycarbonylamine-5-(6)-phenylmercapto-benzimidazoles. Patent
Application US3980796, 1976.
(11) Nielsen, L. S.; Sløk, F.; Bundgaard, H. N-Alkoxycarbonyl prodrugs
of mebendazole with increased water solubility. Int. J. Pharm. 1994,
102, 231–239.
(12) Nielsen, L. S.; Bundgaard, H.; Falch, E. Prodrugs of thiabendazole
with increased water-solubility. Acta Pharm. Nord. 1992, 4, 43–49.
(13) Dhaneshwar, S. R.; Khadikar, P. V.; Chaturvedi, S. C. Synthesis and
antimicrobial activity of some Mannich bases of fenbendazole. Indian
Drugs 1990, 28, 625–627.
(14) Röchling, H.; Härtel, K.; Kirsch, R.; Düwel, D. Bis-triazinobenz-
imidazoles and Their Preparation. Patent Application US3928345,
1975.
Figure 5. Pharmacokinetic profile after oral application of 6.8 mg/kg
1a and of 5.0 mg/kg 2a to swine.
(15) In order to cope with the requirements of the EMEA/CVMP/540/03
guidelines from the committee for medicinal products for veterinary
use concerning the quality aspects of pharmaceutical veterinary
medicines for administration via drinking water.
(16) Krise, J. P.; Zygmunt, J.; Georg, G. I.; Stella, V. J. Novel prodrug
approach for tertiary amines: synthesis and preliminary evaluation of
N-phosphonooxymethyl prodrugs. J. Med. Chem. 1999, 42, 3094–
3100.
(17) Krise, J. P.; Narisawa, S.; Stella, V. J. A novel prodrug approach for
tertiary amines. 2. Physicochemical and in vitro enzymatic evaluation
of selected N-phosphonooxymethyl prodrugs. J. Pharm. Sci. 1999, 88,
922–927.
(18) Mäntylä, A.; Garnier, T.; Rautio, F.; Nevalainen, T.; Vepsälainen, J.;
Koskinen, A.; Croft, S. L.; Järvinen, T. Synthesis, in vitro evaluation,
and antileishmanial activity of water-soluble prodrugs of buparvaquone.
J. Med. Chem. 2004, 47, 188–195.
(19) Sih, J. C.; Wha bin, I.; Robert, A.; Graber, D. R.; Blakeman, D. P.
Studies on (H+-K+)-ATPase inhibitors of gastric acid secretion.
Prodrugs of 2-[(2-pyridinylmethyl)sulfinyl]benzimidazole proton-pump
inhibitors. J. Med. Chem. 1991, 34, 1049–1062.
(20) Mäntylä, A.; Vepsäläinen, J.; Järvinen, T.; Nevalainen, T. A novel
synthetic route for the preparation of alkyl and benzyl chloromethyl
phosphates. Tetrahedron Lett. 2002, 43, 3793–3794.
(21) Ueda, Y.; Matiskella, J. D.; Golik, J.; Connolly, T. P.; Hudyma, T. W.;
Venkatesh, S.; Dali, M.; Kang, S.-H.; Barbour, N.; Tejwani, R.; Varia,
S.; Knipe, J.; Zheng, M.; Mathew, M.; Mosure, K.; Clark, J.; Lamb,
L.; Medin, I.; Gao, Q.; Huang, S.; Chena, C.-P.; Bronsona, J. J.
Phosphonooxymethyl prodrugs of the broad spectrum antifungal azole,
ravuconazole: synthesis and biological properties. Bioorg. Med. Chem.
Lett. 2003, 13, 3669–3672.
the parent anthelmintic benzimidazole carbamates 2a-g. These
prodrugs combine high solubility and stability in water and are
efficiently cleaved by intestinal alkaline phosphatases, making them
suitable for convenient veterinary application forms such as via
the drinking water. An in vivo study performed in swine with 1a
has shown that the application of the prodrug results in at least a
comparable level of anthelmintic efficacy when compared to the
parent drug 2a, thus attesting for the therapeutic potential of the
compounds developed. Furthermore, a comparative pharmacoki-
netic study has revealed that higher plasma concentrations of
fenbendazole and its active metabolite fenbendazole sulfoxide are
obtained when the prodrug 1a is applied. This observation opens
the opportunity to apply lower doses using prodrugs 1 than usually
recommended for the anthelmintic benzimidazoles 2. Since the link
between the plasma concentration of fenbendazole and its me-
tabolites and the efficacy is still not fully understood, further studies
are currently ongoing to verify this hypothesis. The application of
prodrugs 1a-g to other target animal species and via other modes
of application is also being investigated and will be reported in a
separate paper in due course.
Acknowledgment. We are grateful to many colleagues at
Intervet Innovation GmbH for their technical support: Daniel
Salanta, Meike Wohlleben, Kerstin Fleischauer, Karl-Heinz
Grimm, Diane Jungkunz, Thomas Heider, Margareth Werr, and
Petra Taggeselle.
(22) Moss, D. W. Perspectives in alkaline phosphatase research. Clin. Chem.
1992, 38, 2486–2492.
(23) For details on the study setup, refer to the following: Borgsteede,
F. H. M.; Gaasenbeck, C. P. H.; Nicoll, S.; Domangue, R. J.; Abbott,
E. M. A comparison of the efficacy of two ivermectin formulations
against larval and adult Ascaris suum and Oesophagostomum dentatum
in experimentally infected pigs. Vet. Parasitol. 2007, 146, 288–293.
(24) Petersen, M. B.; Friis, C. Pharmacokinetics of fenbendazole following
intravenous and oral administration to pigs. Am. J. Vet. Res. 2000,
61, 573–576.
(25) Jinno, J.-I.; Kamada, N.; Miyake, M.; Yamada, K.; Mukai, T.; Odomi,
M.; Toguchi, M.; Liversidge, G. G.; Higaki, K.; Kimura, T. Effect of
particle size reduction on dissolution and oral absorption of a poorly
water-soluble drug, cilostazol, in beagle dogs. J. Controlled Release
2006, 111, 56–64.
Supporting Information Available: Experimental details for
the preparation of 4 and 1a-g, their corresponding analytical
information, and details of the materials and methods used for the
characterization of the 5a regioisomers. This material is available
References
(1) Nari, A.; Hansen, J. W. Resistance of Ecto-Endo-Parasites: Current
and Future Solutions. Presented at the 67th General Session of the
International Committee of the OIE, Paris, May 17–21, 1999.
(2) Mc Leod, R. S. Costs of major parasites to the Australian livestock
industries. Int. J. Parasitol. 1995, 25, 1363–1367.
(3) Guidelines Resistance Management and Integrated Parasite Control
in Ruminants; Animal Production and Health Division, Agriculture
(26) Heimbach, T.; Oh, D.-M.; Li, L. Y.; Forsberg, M.; Savolainen, J.;
Leppänen, J.; Matsunaga, Y.; Flynn, G.; Fleisher, D. Absorption rate
limit considerations for oral phosphate prodrugs. Pharm. Res. 2003,
20, 848–856.
JM701456R