synthesis and refined isotropically. In compounds 14a and
5bꢂMe2SO the hydrogen atoms bonded to the nitrogen atoms
were found in the Fourier synthesis and refined isotropically,
all the other hydrogens were introduced in calculated position
and refined in agreement with the coordinates of the atoms to
which they are bound.
8 S. Senger, C. Chan, M. A. Convery, J. A. Hubbard, G. P. Shah,
N. S. Watson and R. J. Young, Bioorg. Med. Chem. Lett., 2007, 17,
2931.
9 (a) A. Weber and J. Frossard, Ann. Pharm. Fr., 1966, 6, 445;
(b) N. Lebegue, S. Gallet, N. Flouquet, P. Carato, S. Giraudet and
P. Berthelot, Heterocycles, 2004, 63, 2457; (c) N. Lebegue,
S. Gallet, N. Flouquet, P. Carato, B. Pfeiffer, P. Renard,
´ ´
S. Leonce, A. Pierre, P. Chavatte and P. Berthelot, J. Med. Chem.,
2005, 48, 7363.
10 R. A. Abramovitch, C. I. Azogu, I. T. McMaster and
D. P. Vanderpool, J. Org. Chem., 1978, 43, 1218.
11 K. Kunz, U. Scholz and D. Ganzer, Synlett, 2003, 2428.
12 (a) M. Carril, R. SanMartin, F. Churruca, I. Tellitu and
E. Dominguez, Org. Lett., 2005, 7, 4787; (b) M. Carril,
R. SanMartin, E. Dominguez and I. Tellitu, Tetrahedron, 2007,
63, 690.
Finally in compound 15aꢂMe2SO all the hydrogen atoms
were introduced in calculated positions and refined in
agreement with the coordinates of the atoms to which they
are bound. Fig. 4–9 report ORTEP3 views of the six structures.
Crystallographic data and refinement parameters for the six
structures are reported in Table 6.
13 N. Hucher, B. Decroix and A. Daich, J. Org. Chem., 2001, 66,
4695.
Computational study
14 F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 380.
15 (a) H. Bock, N. Nagel and C. Naether, Z. Naturforsch., Teil B,
1998, 53, 1389; (b) A. Parkin, A. Collins, C. J. Gilmore and
C. C. Wilson, Acta Crystallogr., Sect. B: Struct. Sci., 2008, 64, 66.
16 (a) R. D. Bindal, J. T. Golab and J. A. Katzenellenbogen, J. Am.
Chem. Soc., 1990, 112, 7861; (b) J. B. Nicholas, R. Vance,
E. Martin, B. J. Burke and A. J. Hopfinger, J. Phys. Chem.,
1991, 95, 9803; (c) J. Heyd, W. Thiel and W. Weber, J. Mol.
Struct. (THEOCHEM), 1997, 391, 125; (d) G. Liang, J. P.
Bays and J. P. Bowen, J. Mol. Struct. (THEOCHEM), 1997,
401, 165.
17 T. C. Higgs, A. Parkin, S. Parsons and P. A. Tasker, Acta
Crystallogr., Sect. E: Struct. Rep. Online, 2002, 58, o523.
18 K. B. Wiberg, Advances in Molecular Modeling, ed. D. Liotta, Jai
Press, London, 1988.
19 K. A. Brameld, B. Kuhn, D. C. Reuter and M. Stahl, J. Chem. Inf.
Model., 2008, 48, 1.
The GAUSSIAN03 (Revision B.05)35 package implemented
on a personal computer was used for all the computational
studies concerning the monomers (see Fig. 3, Scheme 8 and
ref. 28). In all cases the level of theory was HF-SCF, the basis
set was 6-311+G(d,p).36 The Berny algorithm37 was used for
the optimization procedure. The reliability of the stationary
points was assessed by the evaluation of the vibrational
frequencies. NBO analyses were performed using the NBO
5.0 program.26 Given that the oxo (4a), amine (8b) and sulfur
derivatives (13a and 14a) show in the solid state three distinct
overall geometries, namely I, II and III (see Scheme 8 and the
X-ray structure discussion in the Solid state characterization
results paragraph), for each modelled molecule sketched in
Fig. 3, three starting geometries were considered and fully
optimized (4a-I/4a-III; 8a-I/8a-III; 13a-I/13a-III; 14a-I/14a-III).
Tables 1–4 list the most interesting geometrical optimized para-
meters, Table 5 reports the relative energy contents of each
optimized species.
20 M. C. Menziani, M. Cocchi and P. G. De Benedetti, J. Mol. Struct.
(THEOCHEM), 1992, 256, 217.
21 V. Petrov, V. Petrova, G. V. Girichev, H. Oberhammer,
N. I. Giricheva and S. Ivanov, J. Org. Chem., 2006, 71, 2952.
22 V. M. Petrov, G. V. Girichev, H. Oberhammer, V. N. Petrova,
N. I. Giricheva, A. V. Bardina and S. N. Ivanov, J. Phys. Chem. A,
2008, 112, 2969.
23 W. L. Duax, C. M. Weeks and D. C. Rohrer, Top. Stereochem.,
1976, 9, 271.
24 V. Bertolasi, V. Ferretti, G. Gilli and P. A. Borea, Cryst. Struct.
Commun., 1982, 11, 1481.
25 C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112,
5525.
26 E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter,
J. A. Bohmann, C. M. Morales and F. Weinhold, NBO 5.0.,
Theoretical Chemical Institute, University of Wisconsin, Madison,
WI, 2001.
References
1 (a) B. E. Evans, K. E. Rittle, M. G. Bock, R. M. DiPardo,
R. M. Freidinger, W. L. Whittle, G. F. Lundell, D. F. Veber,
P. S. Anderson, R. S. L. Chang, V. J. Lotti, D. J. Cerino,
T. B. Chen, P. J. Kling, K. A. Kunkel, J. P. Springer and
J. Hirshfield, J. Med. Chem., 1988, 31, 2235; (b) A. A. Patchett
and R. P. Nargund, Annu. Rep. Med. Chem., 2000, 35, 289.
2 V. Fedi, A. Guidi and M. Altamura, Mini-Rev. Med. Chem., 2008,
8, 1464.
27 A. Bondi, J. Phys. Chem., 1964, 68, 441.
28 To assess the role of steric effects in driving the tricyclic arrange-
ment, geometry optimizations were performed of two further
molecular models having Z = CH2 and C(CH3)2 (CH2-I, CH2-III,
C(CH3)2-I and C(CH3)2-III). Assuming that the steric hindrance
exerted by the methylene group is negligible when Z = CH2, the
electronic factors should prevail in driving the molecular geometry,
while in the bulkier derivative (Z = C(CH3)2) the steric repulsions
3 M. Paris, M. Porcelloni, M. Binaschi and D. Fattori, J. Med.
Chem., 2008, 51, 1505.
4 (a) D. Giannotti, G. Viti, P. Sbraci, V. Pestellini, G. Volterra,
F. Borsini, A. Lecci, A. Meli, P. Dapporto and P. Paoli, J. Med.
Chem., 1991, 34, 1356; (b) D. Giannotti, G. Viti, R. Nannicini,
V. Pestellini and D. Bellarosa, Bioorg. Med. Chem. Lett., 1995, 5,
1461; (c) M. Altamura, P. Dapporto, A. Guidi, N. J. S. Harmat,
L. Jierry, E. Libralesso, P. Paoli and P. Rossi, New J. Chem., 2008,
32, 1617.
5 E. J. Warawa, B. M. Migler, C. J. Ohnmacht, A. L. Needles,
G. C. Gatos, F. M. McLaren, C. L. Nelson and K. M. Kirkland,
J. Med. Chem., 2001, 44, 372.
6 (a) K. Hiroshi and M. Mitsuru, Jap. Pat., JP 45015983, 1970;
(b) E. Enders, F. Muth and H. Herlinger, GB Pat., GB 1013046,
1963; (c) K. Nagarajan, V. Ranga, A. Venkarlu and R. K. Shah,
Indian J. Chem., 1974, 12, 252.
7 (a) J. Jabicky, The Chemistry of Amides, Interscience, London,
1970; (b) Y. Hiroshi, U. Norihiro, N. Jun, S. Hiroyuki,
K. Yoshihiko, K. Nozomu, Y. Kentaro, A. Makoto and
W. Tatsuo, J. Med. Chem., 1992, 35, 2496.
should play the leading role. As
a matter of fact CH2-I
is more stable than CH2-III. As for the bulkier derivative
(Z = C(CH3)2), the steric effects appear important as provided
by the re-arrangement of the both the I and III geometries during
the minimization processes, which indicate the C(CH3)2-III as the
most stable conformer. Finally the electronic picture of each
model, provided by the NBO analysis, is in keeping with that
already presented and discussed.
29 CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.29.2
(release 20.01.2006 CrysAlis171.NET).
30 CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.29.2
(release 20.01.2006 CrysAlis171. NET).
31 A. Altomare, G. L. Cascarano, C. Giacovazzo, A. Guagliardi,
A. G. Moliterni, M. C. Burla, G. Polidori, M. Camalli and
R. Spagna, J. Appl. Crystallogr., 1999, 32, 115.
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2009
2230 | New J. Chem., 2009, 33, 2219–2231