800 Chem. Res. Toxicol., Vol. 23, No. 4, 2010
Gu et al.
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA ad-
ducts in human lymphocytes. Int. J. Cancer 107, 878–884.
(12) Gorlewska-Roberts, K., Green, B., Fares, M., Ambrosone, C. B., and
Kadlubar, F. F. (2002) Carcinogen-DNA adducts in human breast
epithelial cells. EnViron. Mol. Mutagen. 39, 184–192.
(13) National Toxicology Program (2005) Report on Carcinogenesis, 11th
ed., U.S. Department of Health and Human Services, Public Health
Service, Research Triangle Park, NC.
(14) Zhao, K., Murray, S., Davies, D. S., Boobis, A. R., and Gooderham,
N. J. (1994) Metabolism of the food derived mutagen and carcinogen
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) by human
liver microsomes. Carcinogenesis 15, 1285–1288.
(15) Hammons, G. J., Milton, D., Stepps, K., Guengerich, F. P., and
Kadlubar, F. F. (1997) Metabolism of carcinogenic heterocyclic and
aromatic amines by recombinant human cytochrome P450 enzymes.
Carcinogenesis 18, 851–854.
(30) Turesky, R. J., Parisod, V., Huynh-Ba, T., Langoue¨t, S., and
Guengerich, F. P. (2001) Regioselective differences in C(8)- and
N-oxidation of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline by
human and rat liver microsomes and cytochromes P450 1A2. Chem.
Res. Toxicol. 14, 901–911.
(31) Langoue¨t, S., Welti, D. H., Kerriguy, N., Fay, L. B., Huynh-Ba, T.,
Markovic, J., Guengerich, F. P., Guillouzo, A., and Turesky, R. J.
(2001) Metabolism of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline
in human hepatocytes: 2-Amino-3-methylimidazo[4,5-f]quinoxaline-
8-carboxylic acid is a major detoxification pathway catalyzed by
cytochrome P450 1A2. Chem. Res. Toxicol. 14, 211–221.
(32) Wallin, H., Mikalsen, A., Guengerich, F. P., Ingelman-Sundberg, I.,
Solberg, K. E., Rossland, O. J., and Alexander, J. (1990) Differential
rates of metabolic activation and detoxification of the food mutagen
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by different cyto-
chrome P450 enzymes. Carcinogenesis 11, 489–492.
(33) Ozawa, S., Nagata, K., Yamazoe, Y., and Kato, R. (1995) Formation
of 2-amino-3-methylimidazo[4,5-f]quinoline- and 2-amino-3,8-dim-
ethylimidazo[4,5-f]quinoxaline-sulfamates by cDNA-expressed mam-
malian phenol sulfotransferases. Jpn. J. Cancer Res. 86, 264–269.
(34) Nowell, S. A., Massengill, J. S., Williams, S., Radominska-Pandya,
A., Tephly, T. R., Cheng, Z., Strassburg, C. P., Tukey, R. H., MacLeod,
S. L., Lang, N. P., and Kadlubar, F. F. (1999) Glucuronidation of
2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human
microsomal UDP-glucuronosyltransferases: identification of specific
UGT1A family isoforms involved. Carcinogenesis 20, 1107–1114.
(35) Malfatti, M. A., and Felton, J. S. (2004) Human UDP-glucuronosyl-
transferase 1A1 is the primary enzyme responsible for the N-
glucuronidation of N-hydroxy-PhIP in vitro. Chem. Res. Toxicol. 17,
1137–1144.
(36) Dellinger, R. W., Chen, G., Blevins-Primeau, A. S., Krzeminski, J.,
Amin, S., and Lazarus, P. (2007) Glucuronidation of PhIP and N-OH-
PhIP by UDP-glucuronosyltransferase 1A10. Carcinogenesis 28, 2412–
2418.
(37) Turesky, R. J., Bracco-Hammer, I., Markovic, J., Richli, U., Kappeler,
A.-M., and Welti, D. H. (1990) The contribution of N-oxidation to
the metabolism of the food-borne carcinogen 2-amino-3,8-dimeth-
ylimidazo[4,5-f]quinoxaline in rat hepatocytes. Chem. Res. Toxicol.
3, 524–535.
(16) Turesky, R. J., Constable, A., Richoz, J., Varga, N., Markovic, J.,
Martin, M. V., and Guengerich, F. P. (1998) Activation of heterocyclic
aromatic amines by rat and human liver microsomes and by purified
rat and human cytochrome P450 1A2. Chem. Res. Toxicol. 11, 925–
936.
(17) Crofts, F. G., Sutter, T. R., and Strickland, P. T. (1998) Metabolism
of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human cy-
tochrome P4501A1, P4501A2 and P4501B1. Carcinogenesis 19, 1969–
1973.
(18) Alexander, J., Heidenreich, B., Reistad, R., and Holme, J. A. (1995)
Metabolism of the food carcinogen 2-amino-1-methyl-6-phenylimi-
dazo[4,5-b]pyridine (PhIP) in the rat and other rodents. In Heterocyclic
Amines in Cooked Foods: Possible Human Carcinogens. 23rd
Proceedings of the Princess Takamatusu Cancer Society (Adamson,
R. H., Gustafsson, J.-A., Ito, N., Nagao, M., Sugimura, T., Wakaba-
yashi, K., and Yamazoe, Y., Eds.) pp 59-68, Princeton Scientific
Publishing Co., Inc., New Jersey.
(19) Langoue¨t, S., Paehler, A., Welti, D. H., Kerriguy, N., Guillouzo, A.,
and Turesky, R. J. (2002) Differential metabolism of 2-amino-1-
methyl-6-phenylimidazo[4,5-b]pyridine in rat and human hepatocytes.
Carcinogenesis 23, 115–122.
(20) Kaderlik, K. R., Minchin, R. F., Mulder, G. J., Ilett, K. F., Daugaard-
Jenson, M., Teitel, C. H., and Kadlubar, F. F. (1994) Metabolic
activation pathway for the formation of DNA adducts of the carcinogen
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in rat ex-
trahepatic tissues. Carcinogenesis 15, 1703–1709.
(38) Keating, G. A., and Bogen, K. T. (2004) Estimates of heterocyclic
amine intake in the US population. J. Chromatogr., B: Anal. Technol.
Biomed. Life Sci. 802, 127–133.
(39) Boobis, A. R., Lynch, A. M., Murray, S., de la Torre, R., Solans, A.,
Farre´, M., Segura, J., Gooderham, N. J., and Davies, D. S. (1994)
CYP1A2-catalyzed conversion of dietary heterocyclic amines to their
proximate carcinogens is their major route of metabolism in humans.
Cancer Res. 54, 89–94.
(21) Snyderwine, E. G., Turesky, R. J., Turteltaub, K. W., Davis, C. D.,
Sadrieh, N., Schut, H. A., Nagao, M., Sugimura, T., Thorgeirsson,
U. P., Adamson, R. H., and Thorgeirsson, S. S. (1997) Metabolism
of food-derived heterocyclic amines in nonhuman primates. Mutat.
Res. 376, 203–210.
(40) Alexander, J., Reistad, R., Hegstad, S., Frandsen, H., Ingebrigtsen,
K., Paulsen, J. E., and Becher, G. (2002) Biomarkers of exposure to
heterocyclic amines: approaches to improve the exposure assessment.
Food Chem. Toxicol. 40, 1131–1137.
(41) Holland, R. D., Taylor, J., Schoenbachler, L., Jones, R. C., Freeman,
J. P., Miller, D. W., Lake, B. G., Gooderham, N. J., and Turesky,
R. J. (2004) Rapid biomonitoring of heterocyclic aromatic amines in
human urine by tandem solvent solid phase extraction liquid chro-
matography electrospray ionization mass spectrometry. Chem. Res.
Toxicol. 17, 1121–1136.
(22) Chen, C., Ma, X., Malfatti, M. A., Krausz, K. W., Kimura, S., Felton,
J. S., Idle, J. R., and Gonzalez, F. J. (2007) A comprehensive
investigation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine
(PhIP) metabolism in the mouse using a multivariate data analysis
approach. Chem. Res. Toxicol. 20, 531–542.
(23) Turesky, R. J., Garner, R. C., Welti, D. H., Richoz, J., Leveson, S. H.,
Dingley, K. H., Turteltaub, K. W., and Fay, L. B. (1998) Metabolism
of the food-borne mutagen 2-amino-3,8-dimethylimidazo[4,5-f]qui-
noxaline in humans. Chem. Res. Toxicol. 11, 217–225.
(24) Stillwell, W. G., Kidd, L.-C. K. S.-B., Wishnok, J. W., Tannenbaum,
S. R., and Sinha, R. (1997) Urinary excretion of unmetabolized and
phase II conjugates of 2-amino-1-methyl-6-phenylimidazo[4,5- b]py-
ridine and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline in humans:
Relationship to cytochrome P450 1A2 and N-acetyltransferase actvity.
Cancer Res. 57, 3457–3464.
(25) Strickland, P. T., Qian, Z., Friesen, M. D., Rothman, N., and Sinha,
R. (2002) Metabolites of 2-amino-1-methyl-6-phenylimidazo[4,5-
b]pyridine (PhIP) in human urine after consumption of charbroiled or
fried beef. Mutat. Res. 506-507, 163–173.
(26) Kulp, K. S., Knize, M. G., Fowler, N. D., Salmon, C. P., and Felton,
J. S. (2004) PhIP metabolites in human urine after consumption of
well-cooked chicken. J. Chromatogr., B: Anal. Technol. Biomed. Life
Sci. 802, 143–153.
(27) Malfatti, M. A., Dingley, K. H., Nowell-Kadlubar, S., Ubick, E. A.,
Mulakken, N., Nelson, D., Lang, N. P., Felton, J. S., and Turteltaub,
K. W. (2006) The urinary metabolite profile of the dietary carcinogen
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine is predictive of
colon DNA adducts after a low-dose exposure in humans. Cancer Res.
66, 10541–10547.
(28) Frandsen, H. (2008) Biomonitoring of urinary metabolites of 2-amino-
1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) following human
consumption of cooked chicken. Food Chem. Toxicol. 46, 3200–3205.
(29) Schut, H. A., and Snyderwine, E. G. (1999) DNA adducts of
heterocyclic amine food mutagens: implications for mutagenesis and
carcinogenesis. Carcinogenesis 20, 353–368.
(42) Stillwell, W. G., Turesky, R. J., Sinha, R., Skipper, P. L., and
Tannenbaum, S. R. (1999) Biomonitoring of heterocyclic aromatic
amine metabolites in human urine. Cancer Lett. 143, 145–148.
(43) Malfatti, M. A., Kulp, K. S., Knize, M. G., Davis, C., Massengill,
J. P., Williams, S., Nowell, S., MacLeod, S., Dingley, K. H.,
Turteltaub, K. W., Lang, N. P., and Felton, J. S. (1999) The
identification of [2-14C]2-amino-1-methyl-6-phenylimidazo[4,5-b]py-
ridine metabolites in humans. Carcinogenesis 20, 705–713.
(44) Frandsen, H. (2007) Deconjugation of N-glucuronide conjugated
metabolites with hydrazine hydrate--biomarkers for exposure to the
food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]py-
ridine (PhIP). Food Chem. Toxicol. 45, 863–870.
(45) Stillwell, W. G., Sinha, R., and Tannenbaum, S. R. (2002) Excretion
of the N(2)-glucuronide conjugate of 2-hydroxyamino-1-methyl-6-
phenylimidazo[4,5-b]pyridine in urine and its relationship to CYP1A2
and NAT2 activity levels in humans. Carcinogenesis 23, 831–838.
(46) Kidd, L. C., Stillwell, W. G., Yu, M. C., Wishnok, J. S., Skipper,
P. L., Ross, R. K., Henderson, B. E., and Tannenbaum, S. R. (1999)
Urinary excretion of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine
(PhIP) in White, African-American, and Asian-American men in Los
Angeles County. Cancer Epidemiol. Biomarkers PreV. 8, 439–445.
(47) Fede, J. M., Thakur, A. P., Gooderham, N. J., and Turesky, R. J. (2009)
Biomonitoring of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine
(PhIP) and its carcinogenic metabolites in urine. Chem. Res. Toxicol.
22, 1096–1105.