NJC
ligand occupied ea positions in the HRh(CO)
Paper
2
(Ph-BPE) complex,
3 A. M. Trzeciak and J. J. Ziolkowski, Coord. Chem. Rev., 1999,
190–192, 883–900.
were confirmed by a variable temperature experiment.
The spectroscopic studies supported the observation that both
chiral and non-chiral ligands coordinated to rhodium influenced
the catalytic activity. In particular, the presence of P(NC H )
4 Hydroformylation. Fundamentals, processes and Applications
in Organic Syntheses, ed. A. B o¨ rner and R. Franke, Wiley-
VCH, Verlag GmbH KGaA, 2016.
4
4 3
increased the enantioselectivity originating from Ph-BPE.
5 P. J. Thomas, A. T. Axtell, J. Klosin, W. Peng, C. L. Rand,
T. P. Clark, C. R. Landis and K. A. Abboud, Org. Lett., 2007,
9
, 2665–2668.
Conclusions
6
7
8
9
A. G. Panda, P. J. Tambade, Y. P. Patil and B. M. Bhanage,
React. Kinet., Mech. Catal., 2010, 99, 143–148.
C. Botteghi, R. Ganzerla, M. Lenarda and G. Moretti, J. Mol.
Catal., 1987, 40, 129–182.
Hydrido-rhodium complexes of the type HRh(CO)L
an N-pyrrolyl phosphine ligand, such as P(NC , PPh(NC
or PPh (NC )) were successfully applied in the solventless
3
(where L is
4
H
4
)
3
4 4 2
H ) ,
2
4 4
H
C. K. Brown and G. Wilkinson, J. Chem. Soc. A, 1970,
hydroformylation of unsaturated esters (such as allyl acetate, butyl
acrylate, methyl acrylate, or vinyl acetate) and 2,3-dihydrofuran
under 20 bar of syngas (H /CO = 1) at room temperature. The
presence of the pyrrolyl phosphine ligand enabled the selective
formation of the desired aldehydes with high efficiency. The
strongest p–acceptor phosphine gave the best results, which
were remarkably better than those obtained for these substrates
in other catalytic systems. As expected, the hydroformylation
reactions were faster at 80 1C than at 25 1C. At this temperature,
vinyl acetate was hydroformylated with a high reaction rate
2753–2764.
Y. Shi, X. Hu, B. Zhu, S. Wang, S. Zhang and W. Huang, RSC
Adv., 2014, 4, 62215–62222.
2
1
1
1
0 A. A. Dabbawala, R. V. Jasra and H. C. Bajaj, Catal. Commun.,
010, 11, 616–619.
1 C. F. Hobbs and W. S. Knowles, J. Org. Chem., 1981, 46,
422–4427.
2
4
2 C. Botteghi, S. Paganelli, A. Schionato and M. Marchetti,
Chirality, 1991, 3, 355–369.
13 G. Fremy, Y. Castanet, R. Grzybek, E. Monflier, A. Mortreux,
A. M. Trzeciak and J. J. Ziolkowski, J. Organomet. Chem.,
1
4 A. G. Panda, M. D. Bhor, S. R. Jagtap and B. M. Bhanage,
Appl. Catal., A, 2008, 347, 142–147.
5 O. Saidi, S. Liu and J. Xiao, J. Mol. Catal. A: Chem., 2009, 305,
1
6 A. Gual, C. Godard, S. Castillon and C. Claver, Adv. Synth.
Catal., 2010, 352, 463–477.
7 X. Zheng, K. Xu and X. Zhang, Tetrahedron Lett., 2015, 56,
ꢀ
1
ꢀ1
(TOF up to 2000 mol mol
h ), and excellent regioselectivity
towards the isoaldehyde.
995, 505, 11–16.
A moderate enantioselectivity, up to an ee of 44%, was
obtained with the addition of a threefold excess of the chiral
ligand (R)-BINAP in the hydroformylation of vinyl acetate by
using catalyst I. Excellent chemo- and regioselectivity with high
enantioselectivity, up to an ee of 81%, were obtained when
another chiral phosphine, (R,R)-Ph-BPE, was applied.
Spectroscopic studies ( P and H NMR) of the reaction
mixture revealed the presence of mixed HRh(CO)L(P–P) complexes
containing pyrrolyl phosphine (L) and chiral diphosphine (P–P) in
both systems. In most catalytic systems used in hydroformylation,
HRh(CO) P species with only two Rh–P bonds have been assumed
2 2
to be catalytically active. We earlier proposed the presence of three
phosphorus atoms in the coordination sphere of rhodium in the
active catalysts containing pyrrolyl phosphine ligands. In these
studies we shown that the coordination of both ligands to rhodium
positively influenced the hydroformylation rate and selectivity. This
is especially evident in the hydroformylation of vinyl acetate
catalysed by I and Ph-BPE, which occurred with much better
1
1
1
1
1
30–134.
3
1
1
1
149–1152.
8 A. M. Trzeciak, T. Glowiak, R. Grzybek and J. J. Ziolkowski,
J. Chem. Soc., Dalton Trans., 1997, 1831–1838.
2
19 M. P. Magee, W. Luo and W. H. Hersh, Organometallics,
002, 21, 362–372.
2
18
20 A. M. Trzeciak, B. Borak, Z. Ciunik, J. J. Ziolkowski,
C. F. M. Guedes da Silva and L. J. A. Pombeiro, Eur. J. Inorg.
Chem., 2004, 1411–1419.
1 A. M. Trzeciak, P. Stepnicka, E. Mieczynska and J. J.
Ziolkowski, J. Organomet. Chem., 2005, 690, 3260–3267.
2 W. Gil, A. M. Trzeciak and J. J. Ziolkowski, Organometallics,
2
2
2
2
2
2
2
enantioselectivity than that with a Rh(acac)(CO) precursor.
2
008, 27, 4131–4138.
3 A. M. Trzeciak, J. J. Ziolkowski and B. Marciniec, C. R. Acad.
Sci., Ser. IIc: Chim., 1999, 2, 235–239.
4 R. Jackstell, H. Klein, M. Beller, K. Wiese and D. Rottger,
Eur. J. Org. Chem., 2001, 3871–3877.
5 O. Diebolt, H. Tricas, Z. Freixa and P. W. N. M. Van Leeu-
wen, ACS Catal., 2013, 3, 128–137.
6 R. Luo, H. Liang, X. Zheng, H. Fu, M. Yuan, R. Li and
H. Chen, Catal. Commun., 2014, 50, 29–33.
Conflicts of interest
There are no conflicts to declare.
References
1
Applied Homogenous Catalysis with Organometallic Com-
pounds: A Comprehensive Handbook in Two Volumes, ed. 27 X. Zheng, C. Zheng, F. Zhou, H. Fu, M. Yuan, R. Li, B. Xu
B. Cornils and W. A. Herrmann, VCH Weinheim, 1996.
and H. Chen, Chin. Chem. Lett., 2016, 27, 678–680.
Rhodium Catalyzed Hydroformylation, ed. P. W. N. M. Van Leeu- 28 W. Alsalahi, R. Grzybek and A. M. Trzeciak, Catal. Sci.
wen and C. Claver, Kluwer Academic Publisher, Dordrecht, 2000.
Technol., 2017, 7, 3097–3103.
2
16998 | New J. Chem., 2019, 43, 16990--16999 This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019