2274
S.A. Khan, M. Yusuf / European Journal of Medicinal Chemistry 44 (2009) 2270e2274
4.3. Preparation of palladium(II) complexes
flow cabinet. Five paper disks (6.0 mm diameter) were fixed
onto nutrient agar plate. One milligram of each test compound
was dissolved in 100 mL DMSO to prepare stock solution and
from stock solution different concentrations 10, 20, 25, 50, and
100 mg/mL of each test compound were prepared. These
compounds of different concentrations were poured over
disk plate onto it. Amoxicillin (30 mg) was used as standard
drug (positive control). DMSO poured disk was used as nega-
tive control. The susceptibility of the bacteria to the test
compounds was determined by the formation of an inhibitory
zone after 18 h of incubation at 36 ꢀC. Table 1 reports the
inhibition zones (mm) of each compound and the controls.
The results of minimum inhibitory concentration (MIC) are
presented in Table 2. Tests using DMSO and amoxicillin as
negative and positive controls.
All the complexes were prepared by mixing the equimolar
ratio of ligand and [Pd(DMSO)2Cl2] in refluxing methanol.
The solution was kept at 0 ꢀC overnight, the product was
separated by filtration and finally washed with methanol.
Recrystallization was effected in methanol/DMF (6:4) [17].
4.3.1. [Pd(C35H53N3S)Cl2] (1a)
Yield:
72%;
m.p.
248 ꢀC;
Anal.
Calc.
for
[Pd(C35H53N3S)Cl2]: C, 58.01; H, 7.32; N, 5.80. Found: C,
57.02; H, 7.32; N, 5.80. IR (KBr) nmax cmꢁ1: 3446 (NeH),
1535 (C]N), 1522 (C]C), 1148 (CeN), 1022 (C]S), 432
1
(MeN, MeS). H NMR (DMSO) (d): 9.60 (2H, s, eNH),
7.26e8.14 (6H, m, aryl protons), 5.52 (1H, s, C6eH), 3.72
(1H, s, eNH), 2.10 (3H, s, CH3), 1.14 (C10eCH3), 0.84
(C13eCH3), 0.96, 1.04 (other methyl protons). 13C NMR
(DMSO) (d): 185.6 (C]S), 155.4 (C]N), 134.8 (CeNH),
21.2 (C10eCH3), 19.5 (C13eCH3), 18.2, 18.5 (remaining
methyl carbon), 16.2 (CH3 of o-toludine). Mass spectra
Acknowledgment
Authors are thankful to Dr. Kishwar Saleem Department of
Chemistry, Jamia Millia Islamia New Delhi for usefull
discussion.
ꢂ
(Mþ ) at m/z 725, 689 (M ꢁ Cl), 653 (M ꢁ Cl2), 548
(M ꢁ Pd), 533 (M ꢁ CH3), 457 (M ꢁ C7H7), 442
(M ꢁ C7H8N), 398 (M ꢁ C8H8NS), 383 (M ꢁ C8H9N2S).
References
4.3.2. [Pd(C35H53N3S)Cl2](2a)
Yield:
68%;
m.p.
262 ꢀC;
Anal.
Calc.
for
[1] A.P. Rebolledo, J.D. Ayala, G.M. De Lima, N. Marchini, G. Bombieri,
C.L. Zani, E.M.S. Fagundes, H. Beraldo, Eur. J. Med. Chem. 40
(2005) 467e472.
[Pd(C35H53N3S)Cl2]: C, 58.01; H, 7.32; N, 5.80. Found: C,
56.86; H, 6.82; N, 5.20. IR (KBr) nmax cmꢁ1: 3452 (NeH),
1552 (C]N), 1518 (C]C), 1146 (CeN), 1014 (C]S), 498,
[2] J.G. Tojal, A.G. Orad, J.L. Serra, J.L. Pizarro, L. Lezama, M.I. Arriortua,
T. Rojo, J. Inorg. Biochem. 75 (1999) 45e54.
[3] J.G. Tojal, J.L. Dizarro, A.G. Orad, A.R. P-Sanz, M. Ugalda, A.A. Diaz,
J.L. Serra, M.I. Arriortua, T. Rojo, J. Inorg. Biochem. 86 (2001)
627e633.
1
445 (MeN, MeS). H NMR (DMSO) (d): 9.28 (2H, s, e
NH), 7.40e8.08 (6H, m, aryl protons), 5.32 (1H, s, C6eH),
3.84(1H, s, NH), 2.12 (3H, s, CH3), 1.16 (C10eCH3), 0.76
(C13eCH3), 0.94, 0.96 (other methyl protons).
[4] A.R. Cowley, J.R. Dilworth, P.S. Donnelly, A.D. Gee, J.M. Heslpo,
Dalton Trans. (2004) 2404e2412.
[5] A.R. Cowley, J.R. Dilworth, P.S. Donnelly, E. Labisbal, A. Sousa, J. Am.
Chem. Soc. 124 (2002) 5270e5271.
4.3.3. [Pd(C35H53N3S)Cl2] (3a)
Yield:
78%;
m.p.
278 ꢀC;
Anal.
Calc.
for
[6] P.F. Kelly, A.M.Z. Slawin, A. S-Rama, J. Chem. Soc., Dalton Trans.
(1996) 53e59.
[Pd(C35H53N3S)Cl2]: C, 58.01; H, 7.32; N, 5.80. Found: C,
56.45; H, 6.20; N, 4.50. IR (KBr) nmax cmꢁ1: 3468 (NeH),
1528 (C]N), 1478 (C]C), 1146 (CeN), 1018 (C]S), 428,
[7] F. Basuli, S.M. Peng, S. Bhattacharya, Inorg. Chem. 36 (1997)
5645e5647.
[8] F. Basuli, M. Ruf, C.G. Pierpont, S. Bhattacharya, Inorg. Chem. 37
(1998) 6113e6116.
1
447 (MeN, MeS). H NMR (DMSO) (d): 9.48 (2H, s, e
NH), 7.26e8.12 (6H, m, aryl protons), 5.38 (1H, s, C6eH),
3.32 (1H, s, NH), 2.05 (3H, s, CH3), 1.14 (C10eCH3), 0.78
(C13eCH3), 0.96, 0.98 (other methyl protons).
[9] I. Pal, F. Basuli, T.C.W. Mac, S. Bhattacharya, Angew. Chem., Int. Ed.
Engl. 40 (2001) 2923e2925.
[10] R. Prabhakaran, R. Karvembu, T. Hashimoto, K. Shimizu, K. Natarajan,
Inorg. Chim. Acta 358 (2005) 6093e6097.
[11] L.M. Fostiak, I. Gracia, J.K. Swearinger, E. Bermejo, A. Castineivas,
D.X. West, Polyhedron 22 (2003) 83e92.
4.4. Organism culture and in vitro screening
[12] L. Ze-Hua, D. Chun-Ying, L. Ji-Hui, L. Young-Jiang, M. Yu-Hua,
Y. Xiao-Zeng, New J. Chem. 24 (2000) 1057e1062.
[13] S.B. Novakovi, G.A. Bogdanovic, V.M. Leovac, Inorg. Chem. Commun.
8 (2005) 9e13.
Antibacterial activity was done by the disk diffusion
method with minor modifications. S. aureus, S. pyogenes, S.
typhimurium, and E. coli were sub cultured in BHI medium
and incubated for 18 h at 37 ꢀC, and then the bacterial cells
were suspended, according to the McFarland protocol in saline
:
10 mL of this suspension was mixed with 10 mL of sterile an-
tibiotic agar at 40 ꢀC and poured onto an agar plate in a laminar
[14] L.F. Fiesser, J. Am. Chem. Soc. 75 (1953) 542C.
[15] D.G. OSullivan, P.W. Sadler, C. Webley, Chemotherapia 7 (1963) 17.
[16] S. Singh, F. Athar, M.R. Maurya, A. Azam, Eur. J. Med. Chem. 41 (2006)
592e598.
solution to produce a suspension of about 10ꢁ5 CFU mLꢁ1
[17] A. Budakoti, A. Abid, A. Azam, Eur. J. Med. Chem. 42 (2007) 544e551.
[18] S.A. Khan, K. Saleem, Z. Khan, Eur. J. Med. Chem. 42 (2007) 103e108.