C O M M U N I C A T I O N S
Scheme 2. Synthesis of an η2-Porphyrin Ru π Complex Bearing a
Carbon-Metal σ Bonda
a (a) LiCl, 1,2-dichloroethane/methanol, 80 °C.
at 3.22 and 2.70 ppm (vs 0.59 ppm for 2H). The NICS value for 7
was calculated to be -8.6 ppm, supporting the weaker aromaticity of
7 than 2H (NICS ) -11.2 ppm).
Figure 2. UV-vis absorption spectra of 1H (red) and 2H (blue) in CH2Cl2.
Scheme 1. Synthesis of η2-Porphyrin Ru π Complexesa
In summary, we have established a novel strategy for the
synthesis of highly stable η2-porphyrin metal π complexes. The
formation of these π complexes is facilitated through π-π
interactions between the porphyrinic macrocycle and the planar Ru
complexes. π coordination of ruthenium to porphyrin results in
dramatic changes in the aromaticity and electronic properties.
Importantly, these properties are controllable via modification of
the ligand on the Ru center. Further extension of the chemistry of
η2-porphyrin metal π complexes is currently underway.
Acknowledgment. This work was supported by Grants-in-Aid
for Scientific Research (18685013 and 20037034) from MEXT, Japan.
H.S. acknowledges Asahi Glass Foundation for financial support. S.Y.
appreciates the JSPS Research Fellowships for Young Scientists.
Supporting Information Available: General procedures, spectral
data for compounds, absorption spectra, and CIF files from the X-ray
analyses of 2H and 7. This material is available free of charge via the
a (a) (i) n-BuOH/toluene, 100 °C; (ii) KPF6, CH2Cl2/MeOH, rt. (b)
M(OAc)2 (M ) Cu, Zn), MeOH, rt.
References
(1) Klein Gebank, R. J. M.; Suijkerbuijk, B. M. J. M. Angew. Chem., Int. Ed.
2008, 47, 7396.
(2) (a) Cuesta, L.; Karnas, E.; Lynch, V. M.; Sessler, J. L.; Kajonkijya, W.;
Zhu, W.; Zhang, M.; Ou, Z.; Kadish, K. M.; Ohkubo, K.; Fukuzumi, S.
Chem.sEur. J. 2008, 14, 10206. (b) Cuesta, L.; Karnas, E.; Lynch, V. M.;
Chen, P.; Shen, J.; Kadish, K. M.; Ohkubo, K.; Fukuzumi, S.; Sessler,
J. L. J. Am. Chem. Soc. 2009, 131, 13538. (c) Dailey, K. K.; Yap, G. P. A.;
Rheingold, A. L.; Rauchfuss, T. B. Angew. Chem., Int. Ed. 1996, 35, 1833.
(d) Dailey, K. K.; Rauchfuss, T. B. Polyhedron 1997, 16, 3129. (e) Wang,
H. J. H.; Jaquinod, L.; Olmstead, M. M.; Vicente, M. G. H.; Kadish, K. M.;
Ou, Z.; Smith, K. M. Inorg. Chem. 2007, 46, 2898.
(3) (a) Harman, W. D. Chem. ReV. 1997, 97, 1953. (b) Winemiller, M. D. B.;
Kelsch, A.; Harman, W. D. Organometallics 1997, 16, 3672. (c) Keane,
J. M.; Harman, W. D. Organometallics 2005, 24, 1786. (d) Harrison, D. P.;
Welch, K. D.; Nichols-Nielander, A. C.; Sabat, M.; Myers, W. H.; Harman,
W. D. J. Am. Chem. Soc. 2008, 130, 16844.
4, and 5, were at 0.44, 0.38, 0.32, 0.35, and 0.40 V (vs the ferrocene/
ferrocenium ion couple), respectively.9 These data indicate that the
HOMO energies of the complexes were destabilized by the Ru
coordination. These potentials were plotted versus the Hammett σ
parameter, and the reaction constant F was calculated to be 0.054 V,
which is slightly lower than that of para-substituted meso-tetraarylpor-
phyrins (F ) 0.065 V).10 Consequently, the electronic properties of a
porphyrin can be manipulated through π coordination.
To demonstrate the generality of this strategy, we then attempted
to use other planar ligands. Gratifyingly, the reaction of 1H with
dipyridylbenzene Ru complex 6 provided the stable neutral π complex
7 in 39% yield (Scheme 2). The η2 π coordination in 7 was confirmed
by X-ray diffraction analysis (Figure 1c,d). Generally, the carbon-metal
σ bond substantially increases the electron density of the metal center.
In the cyclic voltammogram of 7, the first oxidation wave was observed
(4) (a) Yamaguchi, S.; Katoh, T.; Shinokubo, H.; Osuka, A. J. Am. Chem.
Soc. 2007, 129, 6392. (b) Yamaguchi, S.; Katoh, T.; Shinokubo, H.; Osuka,
A. J. Am. Chem. Soc. 2008, 130, 14440. (c) Yamaguchi, S.; Shinokubo,
H.; Osuka, A. Inorg. Chem. 2009, 48, 795.
(5) (a) Beley, M.; Collin, J.-P.; Louis, R.; Metz, B.; Sauvage, J.-P. J. Am. Chem.
Soc. 1991, 113, 8521. (b) Beley, M.; Collin, J.-P.; Sauvage, J.-P. Inorg.
Chem. 1993, 32, 4539.
(6) For other examples of η2-arene Ru(II) π complexes, see: (a) Harman, W. D.;
Taube, H. J. Am. Chem. Soc. 1988, 110, 7555. (b) Chen, Y.; Shepard, R. E.
Inorg. Chem. 1998, 37, 1249.
at -0.08 V, which is a much lower potential than that of 2H (Eox1
)
0.38 V). In the 1H NMR spectrum of 7, the meso proton at 5.27 ppm
exhibited a substantial upfield shift relative to that of 2H (δ ) 6.60
ppm) due to the higher donation ability of the Ru center of 7. The
higher electron density also results in stronger back-donation of the
Ru center to the macrocycle, and consequently, the π-bond lengths in
7 (2.223 and 2.198 Å) are shorter than those in 2H (2.294 and 2.342
Å). The stronger back-donation significantly weakens the aromaticity
of the porphyrin in 7. The signals of the inner NH protons of 7 appear
(7) Huang, Y.-H.; Huang, W.-W.; Lin, Y.-C.; Huang, S.-L. Organometallics
2010, 29, 38.
(8) The NICS value was obtained by a single-point calculation on the X-ray
structure of 2H. The structure optimization of 2H by the DFT method failed,
but the MP2 method nicely reproduced the face-to-face structure. This fact
emphasizes the importance of π-π interactions in stabilizing the complex.
(9) The reduction potentials of the complexes could not be obtained because
of the instability of the complexes in the reduced states.
(10) Kadish, K. M.; Morrison, M. M. J. Am. Chem. Soc. 1976, 98, 3326.
JA104842H
9
J. AM. CHEM. SOC. VOL. 132, NO. 29, 2010 9993