3 E. J. H. Bechara, F. Dutra, V. E. S. Cardoso, A. Sartori, K. P. K. Olympio,
C. A. A. Penatti, A. Adhikari and N. A. Assuncao, Comp. Biochem.
Physiol., Part C: Toxicol. Pharmacol., 2007, 146, 88.
standard conditions the allylic derivative 10 was isolated in
excellent yield.
The alternative formation of A from F′ via intramolecular
nucleophilic attack of the nitrogen of the carbamate fragment at
the less substituted allylic terminus seems unlikely in view of
the known behavior of related allylpalladium carbamate inter-
mediates in the presence of nitrogen nucleophiles20 and of the
reaction of 8 with piperidine that we carried out. Only in the
absence of an external nucleophile the intramolecular nucleophi-
lic attack of morpholine takes place affording 9 in high yield
(Scheme 7, b).
4 M. C. Myers, J. Wang, J. A. Iera, J.-k. Bang, T. Hara, S. Saito,
G. P. Zambetti and D. H. Appella, J. Am. Chem. Soc., 2005, 127, 6152.
5 C. Boulle, M. Dalko and A. Cavezza, Eur. Pat. Appl, EP 1405633, 2004;
C. Boulle, M. Dalko and A. Cavezza, Chem. Abstr., 2004, 140, 308957.
6 For recent selected references, see: (a) R. R. Singhaus, R. C. Bernotas,
R. Steffan, E. Matelan, E. Quinet, P. Nambi, I. Feingold, C. Huselton,
A. Wilhelmsson, A. Goos-Nilsson and J. Wrobel, Bioorg. Med. Chem.
Lett., 2010, 20, 521; (b) W. Yu, Z. Guo, P. Orth, V. Madison, L. Chen,
C. Dai, R. J. Feltz, V. M. Girijavallabhan, S. H. Kim, J. A. Kozlowski,
B. J. Lavey, D. Li, D. Lundell, X. Niu, J. J. Piwinski, J. Popovici-Muller,
R. Rizvi, K. E. Rosner, B. B. Shankar, N.-Y. Shih, M. A. Siddiqui,
J. Sun, L. Tong, S. Umland, M. K. C. Wong, D.-Y. Yang and G. Zhou,
Bioorg. Med. Chem. Lett., 2010, 20, 1877; (c) Y. Xu, C. Sheng,
W. Wang, X. Che, Y. Cao, G. Dong, S. Wang, H. Ji, Z. Miao, J. Yao and
W. Zhang, Bioorg. Med. Chem. Lett., 2010, 20, 2942; (d) Y. Sun,
N.-Y. Huang and M.-W. Ding, Synth. Commun., 2010, 40, 1985;
(e) Y. Xiong, B. Ullman, J.-S. K. Choi, M. Cherrier, S. Strah-Pleynet,
M. Decaire, P. I. Dosa, K. Feichtinger, B. R. Teegarden, J. M. Frazer, W.
H. Yoon, Y. Shan, K. Whelan, E. K. Hauser, A. J. Grottick, S. Graeme
and A.-S. Hussien, J. Med. Chem., 2010, 53, 5696; (f) B. Sun,
J. Hoshino, K. Jermihov, L. Marler, J. M. Pezzuto, A. D. Mesecar and
M. Cushman, Bioorg. Med. Chem., 2010, 18, 5352; (g) S. Yu, X. Chai,
H. Hu, Y. Yan, Z. Guan, Y. Zou, Q. Sun and Q. Wu, Eur. J. Med. Chem.,
2010, 45, 4435; (h) H. Watanabe, S. Ogata and T. Satoh, Tetrahedron,
2010, 66, 5675; (i) M. Borthakur, S. Gogoi, J. Gogoi and R. C. Boruah,
Tetrahedron Lett., 2010, 51, 5160; ( j) M. M. Ghorab, F. A. Ragab, H.
I. Heiba, H. A. Youssef and M. G. El-Gazzar, Bioorg. Med. Chem. Lett.,
2010, 20, 6316; (k) L. Ciofi, M. Morvillo, F. Sladojevich, A. Guarna and
A. Trabocchi, Tetrahedron Lett., 2010, 51, 6282; (l) H. Wang, X. Han
and X. Lu, Tetrahedron, 2010, 66, 9129; (m) Q. Zhou and B. B. Snider,
Org. Lett., 2011, 13, 526.
Conclusions
In summary, we have developed a novel palladium-catalyzed
approach to 2-amino ketones from arylpropargylic carbonates
unsubstituted at the propargylic carbon, bearing neutral, elec-
tron-rich and electron-poor aromatic rings, and cyclic secondary
amines containing useful functional groups such as cyano,
chloro, and bromo substituents. Our procedure is simple, uses
readily available starting materials and may represent a useful
tool for the synthesis of this class of compounds. With aryl-
propargylic carbonates containing aryl substituents at the pro-
pargylic carbon the reaction affords α-ketocarbamates in high
yield.
7 (a) T. Sasaki, Y. Ishibashi and M. Ohno, Chem. Lett., 1983, 863;
(b) T. Sasaki, K. Mori and M. Ohno, Synthesis, 1985, 279; (c) T. Sasaki,
K. Mori and M. Ohno, Synthesis, 1985, 280; (d) W. Oppolzer and
O. Tamura, Tetrahedron Lett., 1990, 31, 991; (e) W. Oppolzer,
O. Tamura, G. Sundarababu and M. Signer, J. Am. Chem. Soc., 1992,
114, 5900; (f) W. Oppolzer, O. Tamura and J. Deerberg, Helv. Chim.
Acta, 1992, 75, 1965; (g) D. Enders, C. Poiesz and R. Joseph, Tetra-
hedron: Asymmetry, 1998, 9, 3709; (h) N. Kumaragurubaran, K. Juhl,
W. Zhuang, A. Bøgevig and K. A. Jørgensen, J. Am. Chem. Soc., 2002,
124, 6254; (i) N. Momiyama and H. Yamamoto, Org. Lett., 2002, 4,
3579; ( j) R. O. Duthaler, Angew. Chem., Int. Ed., 2003, 42, 975.
8 (a) G. Fraenkel, J. Gallucci and H. S. Rosenzweig, J. Org. Chem., 1989,
54, 677; (b) D. A. Evans, M. M. Faul and M. T. Bilodeau, J. Am.
Chem. Soc., 1994, 116, 2742; (c) S. Minakata, T. Ando, M. Nishimura,
I. Ryu and M. Komatsu, Angew. Chem., Int. Ed., 1998, 37, 3392;
(d) D. A. Evans and D. S. Johnson, Org. Lett., 1999, 1, 595.
Acknowledgements
We gratefully acknowledge MURST and the University “La
Sapienza”, Rome, for financial support.
Notes and references
‡Electronic effects of the substituents on the aromatic rings bound to the
propargylic system exert a strong influence on the regiochemistry of the
reaction. In the presence of electron-withdrawing 4-ethoxycarbonyl and
3-trifluoromethyl groups the benzylic position of the phenyl ring is more
electrophilic, whereas the electron-donating 4-methoxy group favors the
nucleophilic attack at the benzylic position of the substituted aromatic
ring. Minor differences in the electronic properties of the two aromatic
rings leads to the formation of an approximately equimolar regioisomeric
mixture.
9 (a) A. Villar, C. H. Hövelmann, M. Nieger and K. Muñiz, Chem.
Commun., 2005, 3304; (b) K. Muñiz, C. H. Hövelmann, A. Villar,
R. Vicente, J. Streuff and M. Nieger, J. Mol. Catal. A: Chem., 2006, 251,
277.
10 (a) M. T. Reetz, Chem.Rev., 1999, 99, 1121; (b) L. De Luca,
G. Giacomelli and A. Porcheddu, Org. Lett., 2001, 3, 1519.
11 (a) J. A. Murry, D. E. Frantz, A. Soheili, R. Tillyer, E. J. J. Grabowski
and P. J. Reider, J. Am. Chem. Soc., 2001, 123, 9696; (b) K. W. Kells and
J. M. Chong, J. Am. Chem. Soc., 2004, 126, 15666; (c) A. E. Mattson
and K. A. Scheidt, Org. Lett., 2004, 6, 4363; (d) G.-Q. Li, L.-X. Dai and
S.-L. You, Chem. Commun., 2007, 852.
12 T. Miura, T. Biyajima, T. Fujii and M. Murakami, J. Am. Chem. Soc.,
2012, 134, 194.
13 (a) I. Ambrogio, S. Cacchi and G. Fabrizi, Org. Lett., 2006, 8, 2083;
(b) I. Ambrogio, S. Cacchi, G. Fabrizi and A. Prastaro, Tetrahedron,
2009, 65, 8916.
14 For a review on palladium-catalyzed reactions of propargylic esters, see:
J. Tsuji and T. Mandai, Angew. Chem., Int. Ed. Engl., 1995, 34, 2589.
15 For selected references on the related decarboxylation–allylation of alkyl
allylic carbonates, see: F. Guibe and S. M. Leux, Tetrahedron Lett., 1981,
22, 3591; J. Tsuji and I. Minami, Acc. Chem. Res., 1987, 20, 140.
16 K. Tsutsumi, S. Ogoshi, S. Nishiguchi and H. Kurosawa, J. Am. Chem.
Soc., 1998, 120, 1938.
1 K. Yoganathan, W.-H. Wong and T.-S. Kam, Nat. Prod. Lett., 1995, 5,
309; T.-S. Kam, K. Yoganathan and C. Wei, J. Nat. Prod., 1996, 59,
1109; G. Subramaniam and T.-S. Kam, Helv. Chim. Acta, 2008, 91, 930.
2 (a) N. Sin, L. Meng, H. Auth and C. M. Crews, Bioorg. Med. Chem.,
1998, 6, 1209; (b) L. Meng, B. H. Kwok, N. Sin and C. M. Crews,
Cancer Res., 1999, 59, 2798; (c) N. Sin, K. B. Kim, M. Elofsson,
L. Meng, H. Auth, B. H. Kwok and C. M. Crews, Bioorg. Med. Chem.
Lett., 1999, 9, 2283; (d) B. Bennacer, C. Rivalle and D. S. Grierson,
Eur. J. Org. Chem., 2003, 4569; (e) J. Adams, Nat. Rev. Cancer, 2004, 4,
349; (f) A. Ho, K. Cyrus and K.-B. Kim, Eur. J. Org. Chem., 2005,
4829.
17 M. W. Baize, P. W. Blosser, V. Plantevin, D. G. Schimpff, J. C. Gallucci
and A. Wojcicki, Organometallics, 1996, 15, 164.
4702 | Org. Biomol. Chem., 2012, 10, 4699–4703
This journal is © The Royal Society of Chemistry 2012