C O M M U N I C A T I O N S
Table 1. AHR of 1 to 2, Using Phosphoramidites as Liganda
ligands and not requiring any additives, has been developed.
Excellent enantioselectivities up to 96% ee are reached for the first
time in a Heck reaction with monodentate ligands. Extension of
the scope of this reaction and detailed mechanistic studies are
currently in progress.
entry
L*
solvent
base
additive
conv. (%)b ee (%)c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
L*-1 THF
L*-1 CH2Cl2
L*-1 CHCl3
K2CO3
K2CO3
K2CO3
100
100
100
100
<10
60
68
35
100
100
80
95
90
<2
100
100
68
84
86
80
L*-1 Toluene K2CO3
L*-1 CHCl3
L*-1 CHCl3
L*-1 CHCl3
L*-1 CHCl3
L*-1 CHCl3
L*-1 CHCl3
L*-1 CHCl3
L*-1 CHCl3
L*-1 CHCl3
L*-1 CHCl3
L*-2 CHCl3
L*-2 CHCl3
PSd
K3PO4
PMP
Acknowledgment. We thank Mr. M. B. van Gelder for carrying
out the HPLC measurements. Financial support from the Dutch
Foundation for Scientific Research (NWO-CW) is gratefully
acknowledged.
86
87
92
89
90
83
75
78
Et3N
iPr2EtN
Cy2MeN
iPr2EtN
iPr2EtN
iPr2EtN
iPr2EtN
iPr2EtN
Cy2MeN
Supporting Information Available: Experimental and chromato-
graphic details (PDF). This material is available free of charge via the
iPr2EtN‚HCl
e
f
Ag3PO4
93
96
References
(1) (a) Sato, Y.; Sodeoka, M.; Shibasaki, M. J. Org. Chem. 1989, 54, 4738.
(b) Carpenter, N. E.; Kucera, D. J.; Overman, L. E. J. Org. Chem. 1989,
54, 5846.
(2) Shibasaki, M.; Vogl, E. M. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds; Springer-Verlag: Berlin
and Heidelberg, 1999; Vol. I, pp 458-487.
(3) Beller, M.; Riermeier, T. H.; Stark, G. In Transition Metals for Organic
Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998; Vol.
1, pp 208-240.
a Reaction conditions: 0.3 mmol of dienone 1, 6 mol % of Pd(OAc)2,
12 mol % of ligand, 4 equiv of base, 3 mL of solvent, 1 equiv of additive,
reflux, 2 days. b Determined by 1H NMR, isolated yields at 100% conversion
70-75%. c Determined by HPLC analysis using a DAICEL OD or AS
column. d Proton Sponge. e nBu4NI. f nBu4NOTf.
Scheme 2. Proposed Catalytic Cycle
(4) Bolm, C.; Hildebrand, J. P.; Mun˜iz, K.; Hermanns, N. Angew. Chem.,
Int. Ed. 2001, 40, 3284-3308.
(5) See for example: (a) Kondo, K.; Sodeoka, M.; Shibasaki, M. J. Org.
Chem. 1995, 60, 4322. (b) Ashimori, A.; Bachand, B.; Calter, M. A.;
Govek, S. P.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120,
6488-6499. (c) Oestreich, M.; Dennison, P. R.; Kodanko, J. J.; Overman,
L. E. Angew. Chem., Int. Ed. 2001, 40, 1439-1442. (d) Lau, S. Y. W.;
Keay, B. A. Synlett 1999, 605-607. (e) Ripa, L.; Hallberg, A. J. Org.
Chem. 1997, 62, 595-602.
(6) Feringa, B. L. Acc. Chem. Res. 2000, 34, 504-513 and references therein.
(7) van Strijdonck, G. P. F.; Boele, M. D. K.; Kamer, P. C. J.; de Vries, J.
G.; van Leeuwen, P. W. N. M. Eur. J. Inorg. Chem. 1999, 1073-1076.
(8) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402-3415.
(9) The AHR of a cyclohexadiene-alcohol has been reported previously:
Kondo, K.; Sodeoka, M.; Mori, M.; Shibasaki, M. Tetrahedron Lett. 1993,
34, 4219.
(10) (a) Imbos, R.; Brilman, M. H. G.; Pineschi, M.; Feringa, B. L. Org. Lett.
1999, 1, 623-625. (b) Imbos, R.; Minnaard, A. J.; Feringa, B. L.
Tetrahedron 2001, 57, 2485-2489.
(11) See for example: Friestad, G. K.; Branchaud, B. P. Tetrahedron Lett.
1997, 38, 5933-5936.
(12) For a review of phenolic oxidations with PIDA, see: Pelter, A.; Ward,
R. S. Tetrahedron 2001, 57, 273-282.
(13) Mandoli, A.; Arnold, L. A.; de Vries, A. H. M.; Salvadori, P.; Feringa,
B. L. Tetrahedron: Asymmetry 2001, 12, 1929-1937.
(14) Sometimes, small quantities (1-8%) of the methoxide-elimination, rather
than the â-hydride-elimination, product were formed (see Supporting
Information for details).
For comparison, BINAP was also examined as a chiral ligand,
using our optimized conditions or the Shibasaki22 or Overman23
conditions, and product 2 was obtained after 48 h in 0-50% yield
and 0-5% ee.
(15) (a) Gu¨rtler, C.; Buchwald, S. L. Chem. Eur. J. 1999, 5, 3107-3112. (b)
Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 6989-6990.
(16) Lagasse, F.; Kagan, H. B. Chem. Pharm. Bull. 2000, 48, 315-324 and
references therein.
On the basis of extensive mechanistic studies of Heck couplings,
the formation of 2 can be rationalized as shown in Scheme 2.
Initially, a chiral Pd(0) complex A is formed. Oxidative addition
of dienone 1 results in Pd(II) complex B. Subsequent C-C bond
formation (association and insertion into Pd-C) leads to complex
C, which does not have a syn â-hydride. To reach the final product
2 epimerization of the C-2 center leading to D followed by syn
â-hydride elimination to complex E needs to take place. The net
trans elimination can be explained via a mechanism involving oxo-
π-allylpalladium intermediates, similar to enolization in normal
ketones,11 which have found precedence in the Pd-catalyzed
dehydrosilylation of silyl enolethers.24 It should be noted that several
examples of apparent trans â-hydride elimination have appeared
in the literature.25 Finally, reductive elimination of HI with base
leads to the starting complex A. Preliminary mechanistic studies
indicate a possible neutral pathway.26,27
(17) Komarov, I. V.; Bo¨rner, A. Angew. Chem., Int. Ed. 2001, 40, 1197-
1200 and references therein.
(18) Van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; Van Esch, J.; de
Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2000,
122, 11539-11540.
(19) Keller, E.; Maurer, J.; Naasz, R.; Schrader, T.; Meetsma, A.; Feringa, B.
L. Tetrahedron: Asymmetry 1998, 9, 2409-2413.
(20) This is the average of 8 experiments with ee’s ranging from 94.0 to 96.5%.
(21) The results of the AHR of two other examples of dienones, resulting in
93% and 75% ee, respectively, are given in the Supporting Information.
(22) Sato, Y.; Honda, T.; Shibasaki, M. Tetrahedron Lett. 1992, 33, 2593.
(23) Ashimori, A.; Overman, L. E. J. Org. Chem. 1992, 57, 4571.
(24) Ito, Y.; Aoyana, H.; Saegusa, T. J. Am. Chem. Soc. 1980, 102, 4519-
4521.
(25) See for example: (a) Dieck, H. A.; Heck, R. F. J. Organomet. Chem.
1975, 93, 259. (b) Cida, N.; Ohtsuka, M.; Ogawa, S. J. Org. Chem. 1993,
58, 4823-4832. (c) Hudlicky, T.; Olivo, H. F. J. Am. Chem. Soc. 1992,
114, 9694-9696. (d) Ahmad-Junan, S. A.; Amos, P. C.; Whiting, D. A.
J. Chem. Soc., Perkin Trans. 1 1992, 539.
(26) Overman, L. E.; Poon, D. J. Angew. Chem., Int. Ed. Engl. 1997, 36, 518-
521.
In conclusion, an efficient enantioselective intramolecular Heck
reaction of cyclohexadienones, using readily available and modular
TADDOL-based mono- and bidentate phosphoramidites as chiral
(27) The ligand-to-palladium ratio in the actual catalytically active complex
is at present unclear.
JA017200A
9
J. AM. CHEM. SOC. VOL. 124, NO. 2, 2002 185