of spiropyran.3a The electron transfer promoted by metal ions
can occur to TTF-quinone dyads in which the electron
accepting abilities of quinone units are rather weak.3b The results
also suggest that the synergic coordination of the oligoethylene
glycol chain and the radical anion of the quinone unit with metal
ion may contribute to stabilizing the corresponding charge-
separation state and thus facilitate the electron-transfer process.
In fact, electronic properties and even self-assembly morphology
were reported to be modulated for chromospheres connected
by oligoethylene glycol chain upon binding of metal cations.4
In this report, we describe a new TTF-quinone-TTF triad
1 (Scheme 1) in which the quinone unit is substituted with the
N,N-dialkylaniline unit. According to previous studies,5 in-
tramolecular charge transfer (ICT) should exist between the
quinone and N,N-dialkylaniline units. The absorption and ESR
spectral studies show that (1) electron transfer occurs within
triad 1 in the presence of metal ions (Pb2+, Zn2+, and Sc3+); (2)
simultaneously, the intramolecular charge transfer becomes weak
after addition of metal ions, indicating that the electron transfer
A New
Tetrathiafulvalene-Quinone-Tetrathiafulvalene
Triad: Modulation of the Intramolecular Charge
Transfer by the Electron-Transfer Process
Promoted by Metal Ions
Yan Zeng,†,‡ Guanxin Zhang,*,† Deqing Zhang,*,† and
Daoben Zhu†
Beijing National Laboratory for Molecular Sciences,
Organic Solids Laboratory, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, People’s Republic of
China, and Graduate School of Chinese Academy of
Sciences, Beijing 100049, People’s Republic of China
ReceiVed April 7, 2009
(1) (a) Bryce, M. R. AdV. Mater. 1999, 11, 11–23. (b) Pease, A. R.; Jeppesen,
J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.; Heath, J. R. Acc. Chem. Res. 2001,
34, 433–444. (c) Segura, J. L.; Mart´ın, N. Angew. Chem., Int. Ed. 2001, 40,
1372–1409. (d) Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. ReV. 2004,
104, 4891–4945. (e) Yamada, J. I.; Akutsu, H.; Nishikawa, H.; Kikuchi, K. Chem.
ReV. 2004, 104, 5057–5084. (f) Gorgues, A.; Hudhomme, P.; Salle´, M. Chem.
ReV. 2004, 104, 5151–5184. (g) Tsiperman, E.; Becker, J. Y.; Khodokovsky,
V.; Shames, A.; Shapiro, L. Angew. Chem., Int. Ed. 2005, 44, 4015–4018. (h)
Perepichka, D. F.; Bryce, M. R. Angew. Chem., Int. Ed. 2005, 44, 5370–5373.
(i) Nygaard, S.; Leung, K. C.-F.; Aprahamian, I.; Ikeda, T.; Saha, S.; Laursen,
B. W.; Kim, S.-Y.; Hansen, S. W.; Stein, P. C.; Flood, A. H.; Stoddart, J. F.;
Jeppesen, J. O. J. Am.Chem. Soc. 2007, 129, 960–970. (j) Nygaard, S.; Liu, Y.;
Stein, P. C.; Flood, A. H.; Jeppesen, J. O. AdV. Funct. Mater. 2007, 17, 751–
762. (k) Jia, C. Y.; Liu, S. X.; Tanner, C.; Leiggener, C.; Neels, A.; Sanguinet,
L.; Levillain, E.; Leutwyler, S.; Hauser, A.; Decurtins, S. Chem.sEur. J. 2007,
13, 3804–3812.
(2) (a) Li, H. C.; Jeppesen, J. O.; Levillain, E.; Becher, J. Chem. Commun.
2003, 846–847. (b) Nielsen, K. A.; Cho, W.-S.; Jeppesen, J. O.; Lynch, V. M.;
Becher, J.; Sessler, J. L. J. Am. Chem. Soc. 2004, 126, 16296–16297. (c) Li,
X. H.; Zhang, G. X.; Ma, H. M.; Zhang, D. Q.; Li, J.; Zhu, D. B. J. Am. Chem.
Soc. 2004, 126, 11543–11548. (d) Zhang, G. X.; Zhang, D. Q.; Guo, X. F.;
Zhu, D. B. Org. Lett. 2004, 6, 1209–1212. (e) Leroy-Lhez, S.; Baffreau, J.; Perrin,
L.; Levillain, E.; Allain, M.; Blesa, M.-J.; Hudhomme, P. J. Org. Chem. 2005,
70, 6313–6320. (f) Xue, H.; Tang, X.-J.; Wu, L.-Z.; Zhang, L.-P.; Tung, C.-H.
J. Org. Chem. 2005, 70, 9727–9734. (g) Xiao, X. W.; Xu, W.; Zhang, D. Q.;
Xu, H.; Lu, H. Y.; Zhu, D. B. J. Mater. Chem. 2005, 15, 2557–2561. (h) Nielsen,
K. A.; Cho, W.-S.; Sarova, G. H.; Petersen, B. M.; Bond, A. D.; Becher, J.;
Jensen, F.; Guldi, D. M.; Sessler, J. L.; Jeppesen, J. O. Angew. Chem., Int. Ed.
2006, 45, 6848–6853. (i) Delogu, G.; Fabbri, D.; Dettori, M. A.; Salle´, M.; Le
Derf, F.; Blesa, M.-J.; Allain, M. J. Org. Chem. 2006, 71, 9096–9103.
(3) (a) Wu, H.; Zhang, D. Q.; Su, L.; Ohkubo, K.; Zhang, C. X.; Yin, S. W.;
Mao, L. Q.; Shuai, Z. G.; Fukuzumi, S.; Zhu, D. B. J. Am. Chem. Soc. 2007,
129, 6839–6846. (b) Wu, H.; Zhang, D. Q.; Zhang, G. X.; Zhu, D. B. J. Org.
Chem. 2008, 73, 4271–4274. (c) Wu, H.; Zhang, D. Q.; Zhu, D. B. Tetrahedron
Lett. 2007, 48, 8951–8955.
(4) (a) Ajayaghosh, A.; Arunkumar, E.; Daub, J. Angew. Chem., Int. Ed.
2002, 41, 1766–1769. (b) Arunkumar, E.; Chithra, P.; Ajayaghosh, A. J. Am.
Chem. Soc. 2004, 126, 6590–6598. (c) Arunkumar, E.; Ajayaghosh, A.; Daub,
J. J. Am. Chem. Soc. 2005, 127, 3156–3164. (d) Ajayaghosh, A. Acc. Chem.
Res. 2005, 38, 449–459. (e) Nabeshima, T.; Hashiguchi, A.; Saiki, T.; Akine, S.
Angew. Chem., Int. Ed. 2002, 41, 481–484. (f) McSkimming, G.; Tucker, J. H. R.;
Bouas-Laurent, H.; Desvergne, J. P. Angew. Chem., Int. Ed. 2000, 39, 2167–
2169. (g) Lo¨hr, H.-G.; Vo¨gtle, F. Chem. Ber. 1985, 118, 914–921. (h)
Ajayaghosh, A.; Chithra, P.; Varghese, R. Angew. Chem., Int. Ed. 2007, 46,
230–233. (i) Ajayaghosh, A.; Chithra, P.; Varghese, R.; Divya, K. P. Chem.
Commun. 2008, 969–971. (j) Chithra, P.; Varghese, R.; Divya, K. P.; Ajayaghosh,
A. Chem. Asian J. 2008, 3, 1365–1373.
(5) (a) Bruce, J. M. The Chemistry of Quinonoid Compounds; Patai, S., Ed.;
John Wiley & Sons: NewYork, 1974; Part 1, p 472. (b) Jones, G.; Qian, X. H.
J. Phys. Chem. A 1998, 102, 2555–2560. (c) Zeng, Y.; Zhang, G. X.; Zhang,
D. Q. Anal. Chim. Acta 2008, 627, 254–257. (d) Zeng, Y.; Zhang, G. X.; Zhang,
D. Q. Tetrahedron Lett. 2008, 49, 7391–7394.
Electron transfer can occur from the TTF units to the
substituted quinone unit in a new TTF-quinone-TTF triad
1 containing the N,N-dialkylaniline-substituted quinone unit
flanked by two TTF units, in the presence of metal ions
(Pb2+, Zn2+, and Sc3+). Simultaneously, the corresponding
charge transfer within the substituted quinone unit becomes
weak in the presence of metal ions. Moreover, the metal ion-
promoted electron transfer and the intramolecular charge
transfer can be tuned by alternating UV and visible light
irradiation in the presence of spiropyran.
Electron donor (D)-acceptor (A) compounds with TTF
(tetrathiafulvalene) as electron donor have been widely inves-
tigated for studies of intramolecular charge transfer/photoin-
duced electron-transfer processes and molecular level devices
as well as potential applications in solar cell systems.1 For
instance, fluorescence switches and chemical sensors with TTF
based D-A compounds have been reported.2
We have recently described the metal ions-promoted electron
transfer within TTF-quinone dyads in which the TTF and
quinone units are covalently linked by an oligoethylene glycol
chain.3 Moreover, the electron-transfer process can be modulated
by alternating UV and visible light irradiations in the presence
† Institute of Chemistry, Chinese Academy of Sciences.
‡ Graduate School of Chinese Academy of Sciences.
10.1021/jo9007332 CCC: $40.75
Published on Web 05/07/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 4375–4378 4375