S. Chaudhary et al. / Tetrahedron Letters 50 (2009) 2437–2439
7. Hogermeier, J.; Reissig, H. U. Chemistry 2007, 13, 2410–2420.
2439
Table 4
8. Leadbeater, N. E.; Marco, M. Org. Lett. 2002, 4, 2973–2976.
9. Walla, P.; Kappe, C. O. Chem. Commun. (Camb) 2004, 564–565.
10. Campeau, L. C.; Parisien, M.; Leblanc, M.; Fagnou, K. J. Am. Chem. Soc. 2004, 126,
9186–9187.
11. Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848–
10849.
12. Knowles, J. P.; Whiting, A. Org. Biomol. Chem. 2007, 5, 31–44.
13. Du, X.; Suguro, M.; Hirabayashi, K.; Mori, A.; Nishikata, T.; Hagiwara, N.;
Kawata, K.; Okeda, T.; Wang, H. F.; Fugami, K.; Kosugi, M. Org. Lett. 2001, 3,
3313–3316.
Microwave-assisted cyclization of 11–15
Entry
Substrate
Product
Solvent
Ligand
Yield (%)
1
2
3
4
5
11
12
13
14
15
11a
12a
13a
14a
15a
DMA
DMA
DMA
DMA
DMA
B
B
B
B
B
82
79
90
84
79
14. Lafrance, M.; Blaquiere, N.; Fagnou, K. Chem. Commun. (Camb) 2004, 2874–
2875.
15. Lafrance, M.; Blaquiere, N.; Fagnou, K. Eur. J Org. Chem. 2007, 5, 811–825.
16. Lewis, J. C.; Berman, A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008,
130, 2493–2500.
17. Lewis, J. C.; Wu, J. Y.; Bergman, R. G.; Ellman, J. A. Angew. Chem., Int. Ed. 2006,
45, 1589–1591.
18. Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013–1025.
19. Stevigny, C.; Bailly, C.; Quetin-Leclercq, J. Curr. Med. Chem. Anticancer Agents
2005, 5, 173–182.
20. Rasoanaivo, P.; Ratsimamanga-Urverg, S.; Rafatro, H.; Ramanitrahasimbola, D.;
Palazzino, G.; Galeffi, C.; Nicoletti, M. Planta Med. 1998, 64, 58–62.
21. Indra, B.; Matsunaga, K.; Hoshino, O.; Suzuki, M.; Ogasawara, H.; Ishiguro, M.;
Ohizumi, Y. Can. J. Physiol. Pharmacol. 2002, 80, 198–204.
22. Ayers, S.; Zink, D. L.; Mohn, K.; Powell, J. S.; Brown, C. M.; Murphy, T.; Brand, R.;
Pretorius, S.; Stevenson, D.; Thompson, D.; Singh, S. B. Planta Med. 2007, 73,
296–297.
To further explore the substrate diversity of the microwave
reaction, we then applied our optimized conditions for the synthe-
sis of aporphines 11a–15a (Scheme 3). These results which demon-
strate broader substrate applicability of the reaction conditions are
presented in Table 4.
In conclusion, our study demonstrates the utility of microwaves
for rapid direct biaryl coupling in the synthesis of aporphines.
Additionally, we found that the microwave method is operationally
simpler because no special precautions need to be taken to avoid
exposure of the reaction to air. This is the first report on micro-
wave-assisted direct biaryl coupling in the synthesis of aporphines.
We are continuing to examine substrate tolerance in this micro-
wave-enhanced reaction and will report our findings in due course.
23. Zhang, A.; Zhang, Y.; Branfman, A. R.; Baldessarini, R. J.; Neumeyer, J. L. J. Med.
Chem. 2007, 50, 171–181.
24. Kupchan, S. M.; Kameswaran, V.; Findlay, J. W. J. Org. Chem. 1973, 38, 405–
406.
25. Furstner, A.; Mamane, V. Chem. Commun. (Camb) 2003, 2112–2113.
26. Indra, B.; Tadano, T.; Nakagawasai, O.; Arai, Y.; Yasuhara, H.; Ohizumi, Y.;
Kisara, K. Life Sci. 2002, 70, 2647–2656.
27. Indra, B.; Matsunaga, K.; Hoshino, O.; Suzuki, M.; Ogasawara, H.; Ohizumi, Y.
Eur. J. Pharmacol. 2002, 437, 173–178.
28. Orallo, F. Planta Med. 2003, 69, 135–142.
29. Lafrance, M.; Lapointe, D.; Fagnou, K. Tetrahedron 2008, 64, 6015–6020.
30. Typical microwave-assisted biaryl coupling procedure (using 6 as an example): To
a solution of compound 6 (50.0 mg, 0.09 mmol), in DMA (4 ml) were added
Pd(OAc)2 (2.0 mg, 0.1 mmol), ligand A (6.9 mg, 0.2 mmol), K2CO3 (37.5 mg,
0.3 mmol), and pivalic acid (2.8 mg, 0.03 mmol). The mixture was irradiated in
a Smith Creator microwave reactor in a sealed vial for 5 min with the power
level at 150 W. After cooling to room temperature, the reaction mixture was
loaded onto a deactivated silica gel column and eluted with 40% ethyl acetate-
hexanes. This gave compound 8 (35.0 mg, 0.074 mmol, 82%). Compound 8,
white solid, 1H NMR (CDCl3, 500 MHz): d 1.27 (t, J = 5.6 Hz, 3H), 2.65 (d,
J = 13.8 Hz, 1H), 2.72 (d, J = 13.8 Hz, 1H), 2.87 (t, J = 12.6 Hz, 2H), 2.96 (t,
J = 12.6 Hz, 1H), 3.89 (s, 3H), 4.21 (q, J = 5.6 Hz, 2H), 4.51 (br s, 1H), 4.66 (d,
J = 10.2 Hz, 1H), 4.67 (1H, obscured), 4.81 (d, J = 10.2 Hz, 1H), 5.96 (s, 1H), 5.99
(s, 1H), 6.66 (s, 1H), 6.74 (s, 1H), 7.31 (m, 3H), 7.37 (d, J = 6.6 Hz, 2H), 8.05 (s,
1H).
Acknowledgments
O.L. acknowledges the RISE program at Hunter College for
financial support. We also thank Dr. Robert Bittman at Queens Col-
lege, CUNY for providing access to the microwave reactor and other
general assistance. This publication was made possible by Grant
No. RR03037 from the National Center for Research Resources
(NCRR), a component of the National Institutes of Health.
References and notes
1. Mavandadi, F.; Pilotti, A. Drug Discovery Today 2006, 11, 165–174.
2. Kappe, C. O.; Dallinger, D. Nat. Rev. Drug Disc. 2006, 5, 51–63.
3. Lew, A.; Krutzik, P. O.; Hart, M. E.; Chamberlin, A. R. J. Comb. Chem. 2002, 4, 95–
105.
4. Lindh, J.; Enquist, P. A.; Pilotti, A.; Nilsson, P.; Larhed, M. J. Org. Chem. 2007, 72,
7957–7962.
5. Arvela, R. K.; Leadbeater, N. E. J. Org. Chem. 2005, 70, 1786–1790.
6. Datta, G. K.; Vallin, K. S.; Larhed, M. Mol. Divers 2003, 7, 107–114.