Table 4 Alkyne scope for the [3 + 2] azide-alkyne cycloaddition
Table 5 [3 + 2] Cycloaddition with copper(I) salts
Copper salt
t/h
Yield (%)
CuCl
CuBr
CuI
CuBrꢀDMS
1
2
3.5
1
99
94
89
95
found that they enhance the rate of the reaction and stabilize
the catalytically active copper(I) oxidation state. The system is
versatile and functional group independent, a requirement in
the field of ‘click’ chemistry. The methodology has been
applied to the attachment of small [18F]-labelled prosthetic
groups to a model azide.
aIsolated yield after reaction completion (13 h). bReaction only reaches
70% conv.
however, no further conversion was detected. Closer consid-
eration of the resulting triazole led us to conclude that it is an
excellent ligand for Cu(I), and was used by Sharpless et al. to
catalyze the [3 + 2] cycloaddition of azides and alkynes.4 With
nearly one equivalent of the triazole product with respect to
catalytic copper, the metal center risks saturation and inhibi-
tion of any further catalysis. Propiolic acid (entry 5) showed
similar behaviour, reaching 55% conversion after 1 h and then
requiring a further 12 h to reach full conversion.
Financial support from the University of Groningen
(L. S. C.-V., B. L. F.) and University Medical Center Groningen
(L. M., R. A. D., P. H. E.) is gratefully acknowledged.
Notes and references
1 R. Huisgen, 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley,
New York, 1984, pp. 1–176; V. V. Rostovtsev, L. G. Green, V. V. Fokin
and K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596.
2 H. C. Kolb and K. B. Sharpless, Drug Discovery Today, 2003, 8,
1128; R. Breinbauer and M. Kohn, ChemBioChem, 2003, 4, 1147;
V. D. Bock, H. Hiemstra and J. H. van Maarseveen, Eur. J. Org.
Chem., 2006, 1, 51; K. B. Sharpless and R. Manetsch, Expert Opin.
Drug Discovery, 2006, 1, 525; J. E. Moses and A. D. Moorhouse,
Chem. Soc. Rev., 2007, 36, 1249; H. Struthers, B. Spingler,
T. L. Mindt and R. Schibli, Chem.–Eur. J., 2008, 14, 6173.
3 W. G. Lewis, F. G. Magallon, V. V. Fokin and M. G. Finn, J. Am.
Chem. Soc., 2004, 126, 9152; J. Marik and J. L. Sutcliffe, Tetrahedron
Lett., 2006, 47, 6681; M. Meldal and C. W. Tornøe, Chem. Rev., 2008,
108, 2952; M. Glaser and E. Arstad, Bioconjugate Chem., 2007, 18, 989.
4 T. R. Chan, R. Hilgraf, K. B. Sharpless and V. V. Fokin, Org.
Lett., 2004, 6, 2853; W. G. Lewis, F. G. Magallon, V. V. Fokin
and M. G. Finn, J. Am. Chem. Soc., 2004, 126, 9152.
5 P. S. Donnelloy, S. D. Zanatta, S. C. Zammit, J. M. White and
S. J. Williams, Chem. Commun., 2008, 2459.
As a copper source for the CuAAC, CuSO4ꢀ5H2O in
combination with the water-soluble reducing agent sodium
ascorbate is overwhelmingly favoured. Although Cu(I) salts
can also be used, they require an equivalent of nitrogen
containing base to promote the reaction.2 They cannot be
used in the presence of water due to the inherent thermo-
dynamic instability of copper(I), resulting in its easy oxidation
to copper(II).16 A greater likelihood of side-product formation
is observed in cases where copper(I) salts are used.2,17
We anticipated that the phosphoramidite might stabilize the
catalytically active Cu(I) oxidation state. We tested a range of
readily available copper(I) salts in aqueous solution (Table 5)
and indeed found that they give excellent reaction times
and yields, with no evidence of side product formation
(alkyne–alkyne homocoupling for instance) detected.2
6 V. O. Rodionov, S. I. Presolski, S. Gardinier, Y.-H. Lim
and M. G. Finn, J. Am. Chem. Soc., 2007, 129, 12696.
7 K. Tanaka, C. Kageyama and K. Fukase, Tetrahedron Lett., 2007,
48, 6475.
To test our methodology on the required time scale for
radiolabelling, we synthesized [18F]-fluorinated 1-ethynyl-4-
(fluoromethyl)benzene (Scheme 1). After fluorination, it was
ligated to benzyl azide in the presence of CuSO4ꢀ5H2O and
MonoPhos. Full conversion to the labelled triazole was de-
tected after 10 min (as determined by HPLC and radio-TLC).
Under identical conditions but in the absence of ligand, only
minor conversion to the triazole product was detected (o20%).
8 J.-C. Meng, V. V. Fokin and M. G. Finn, Tetrahedron Lett., 2005,
46, 4543.
9 F. Perez-Balderas, M. Ortega-Munoz, J. Morales-Sanfrutos,
F. Hernandez-Mateo, F. G. Calvo-Flores, J. A. Calvo-Asın,
J. Isac-Garcıa and F. Santoyo-Gonzalez, Org. Lett., 2003, 5, 1951.
10 S. Dıez-Gonzalez, A. Correa, L. Cavallo and S. P. Nolan,
Chem.–Eur. J., 2006, 12, 7559.
11 N. Candelon, D. Lastecoueres, A. K. Diallo, J. R. Aranzaes,
D. Astruc and J.-M. Vincent, Chem. Commun., 2008, 741.
12 A. J. Arduengo III, R. Krafczyk, R. Schmutzler, H. A. Craig,
J. R. Goerlich, W. J. Marshall and M. Unverzagt, Tetrahedron,
1999, 55, 14523.
13 D. J. Berrisford, C. Bolm and K. B. Sharpless, Angew. Chem., Int.
Ed. Engl., 1995, 34, 1059.
14 B. L. Feringa, Acc. Chem. Res., 2000, 33, 346.
15 V. O. Rodionov, S. I. Presolski, D. D. Dıaz, V. V. Fokin and
M. G. Finn, J. Am. Chem. Soc., 2007, 129, 12705.
Scheme 1 Synthesis of [18F]-labelled triazole (RCY = radiochemical
yield).
16 C. L. Merrill, L. J. Wilson, T. J. Thamann, T. M. Loehr, N. S. Ferris
and W. H. Woodruff, J. Chem. Soc., Dalton Trans., 1984, 2207.
17 C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem., 2002,
67, 3057.
In conclusion, we have applied phosphoramidite copper
complexes to the azide–alkyne [3 + 2] cycloaddition and
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 2139–2141 | 2141