B. Wang / Tetrahedron Letters 50 (2009) 2487–2489
2489
Kozlowski, J. A.. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Eds.; Pergamon Press: Oxford, 1991; Vol. 4, p 169; (g) Perlmutter, P. Conjugate
Addition Reactions in Organic Synthesis; Pergamon Press: Oxford, 1992.
3. For a review, see: Heathcock, C. H.. In Comprehensive Organic Synthesis; Trost, B.
M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 2, p 133.
4. (a) McElvain, S. M.; Rorig, K. J. Am. Chem. Soc. 1948, 70, 1820; (b) Walton, H. M.
J. Org. Chem. 1957, 22, 1161.
5. For recent examples, see: (a) Wang, W.; Mei, Y.; Li, H.; Wang, J. Org. Lett. 2005,
7, 601; (b) Lian, J.-J.; Lin, C.-C.; Chang, H.-K.; Chen, P.-C.; Liu, R.-S. J. Am. Chem.
Soc. 2006, 128, 9661; (c) Kreher, U. P.; Rosamilia, A. E.; Raston, C. L.; Scott, J. L.;
Strauss, C. R. Org. Lett. 2003, 5, 3107; (d) Yanagisawa, A.; Goudu, R.; Arai, T. Org.
Lett. 2004, 6, 4281; (e) Bartoli, G.; Bosco, M.; Dalpozzo, R.; Giuliani, A.;
Marcantoni, E.; Mecozzi, T.; Sambri, L.; Torregiani, E. J. Org. Chem. 2002, 67,
9111; (f) Ishihara, K.; Kurihara, H.; Yamamoto, H. Synlett 1997, 597.
6. (a) Okamoto, S.; Iwakubo, M.; Kobayashi, K.; Sato, F. J. Am. Chem. Soc. 1997, 119,
6984; (b) Okamoto, S.; Kasatkin, A.; Zubaidha, P. K.; Sato, F. J. Am. Chem. Soc.
1996, 118, 2208; For an overview, see: (c) Sato, F.; Urabe, H.; Okamoto, S.
Synlett 2000, 753.
7. Falck, J. R.; He, A.; Reddy, L. M.; Kundu, A.; Barma, D. K.; Bandyopadhyay, A.;
Kamila, S.; Akella, R.; Bejot, R.; Mioskowski, C. Org. Lett. 2006, 8, 4645.
8. For reviews, see: (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863; (b)
Kolodiazhnyi, O. I. Phosphorus Ylides; Wiley-VCH: Weinheim, 1999; (c)
Bestmann, H. J.; Vostrowsky, O. Top. Curr. Chem. 1983, 109, 85; (d) Pommer,
H.; Thieme, P. C. Top. Curr. Chem. 1983, 109, 165; (e) Pommer, H. Angew. Chem.,
Int. Ed. Engl. 1977, 16, 423; (f) Maercker, A. Org. React. 1965, 14, 270.
9. For reviews, see: (a) Wadsworth, W. S., Jr. Org. React. 1977, 25, 73; (b) Boutagy,
J.; Thomas, R. Chem. Rev. 1974, 74, 87; (c) Nicolaou, K. C.; Harter, M. W.;
Gunzner, J. L.; Nadin, A. Liebigs Ann. Recl. 1997, 1283; (d) Kulkarni, Y. S.
Aldrichim. Acta 1990, 23, 39.
O
O
O
X
H2, cat. PtO2
MeOH, 90%
+
N
N
N
Bn
Bn
Bn
9k
10
Scheme 4. Formal alkylation via hydrogenation of exocyclic alkene.
ylide 4b with p-anisaldehyde can be conducted smoothly in tolu-
ene, while triphenylphosphorus ylide 4a, the aza-analog of those
carbocyclic ylides described by House and Babad,11a did not react
under the same conditions.
With the optimized conditions in place, the one-pot condensa-
tion of 3b/5/6 with various aldehydes was carried out (Table 2).
Thanks to the improved nucleophilicity of b-keto-tributylphospho-
rus ylides, a general substrate scope was achieved. For aliphatic
aldehydes, regardless of the boiling points, the olefination should
be run in MeCN or DMF in a pressure vessel, while for aromatic
electrophiles, this step was run in toluene under normal pressure.
Moderate to good yields were obtained in most cases, even for the
hindered 2-methyl-hexanal (entry 2), while the yields for 4-nitro-
benzaldehyde were lower (entries 4 and 9). When this substrate
was added to the ylides, the solution turned into dark green color,
probably due to the formation of ketyl radical in the presence of
excess base (Cannizzarro reaction).22 Dimerization of the product
under basic conditions is another possible cause for the low
yields.23
10. For reviews, see: (a) Dumeunier, R.; Marko, I. E. In Modern Carbonyl Olefination;
Gleiter, R., Hopf, H., Eds.; Wiley-VCH: Weinheim, 2004; (b) Kelly, S. E.. In
Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press:
Oxford, 1991; Vol. 1, p 729.
11. (a) House, H. O.; Babad, H. J. Org. Chem. 1963, 28, 90; (b) Fortiadu, F.; Pardigon,
O.; Buono, G.; LeCorre, M.; Hercouet, A. Tetrahedron Lett. 1999, 40, 867; (c)
Minami, T.; Niki, I.; Agawa, T. J. Org. Chem. 1974, 39, 3236; (d) Minami, T.;
Matsumoto, M.; Suganuma, H.; Agawa, T. J. Org. Chem. 1978, 43, 2149; (e) Lee,
K.; Jackson, J. A.; Wiemer, D. F. J. Org. Chem. 1993, 58, 5967.
The utility of this cascade reaction was demonstrated by the
synthesis of 10, a compound which cannot be prepared by conven-
12. (a) Liu, R.-H.; Fang, K.; Wang, B.; Xu, M.-H.; Lin, G.-Q. J. Org. Chem. 2008, 73,
3307; (b) Wang, B.; Fang, K.; Lin, G.-Q. Tetrahedron Lett. 2003, 44, 7981; (c) Liu,
13. (a) Bestmann, H. J.; Arnason, B. Tetrahedron Lett. 1961, 2, 455; (b)
Bestmann, H. J.; Arnason, B. Chem. Ber. 1962, 95, 1513; (c) Wittig, G.;
Schoellkopf, U. Chem. Ber. 1954, 87, 1318; (d) Trippett, S.; Walker, D. M.
J. Chem. Soc. 1961, 1266.
14. (a) Albright, T. A.; Freeman, W. J.; Schweizer, E. E. J. Am. Chem. Soc. 1975, 97,
2942; (b) Miedaner, A. M.; Noll, B. C.; DuBois, D. L. Organometallics 1997, 16,
5779.
tional ketone a-alkylation due to the steric hindrance imposed by
b-branching of the alkylating agents (Scheme 4). Hydrogenation
(1 atm H2/cat. PtO2/MeOH) of the exocyclic C–C double bond in
9k afforded the product in 90% yield.
In summary, we have developed a one-pot cascade transylida-
tion–olefination sequence for the synthesis of 3-alkylidene-piperi-
din-4-ones with diverse C-5 substitution patterns. tert-Butanol is
the solvent of choice for transylidation of substrates possessing
15. Pearson, R. G.; Dillon, R. L. J. Am. Chem. Soc. 1953, 75, 2439.
16. Pearson, D. E.; Buehler, C. A. Chem. Rev. 1974, 74, 45.
acidic a-protons of the ester. Only tributylphosphorus ylides pro-
17. Greenwald, R.; Chaykovsky, M.; Corey, E. J. J. Org. Chem. 1963, 28, 1128.
18. (a) Johnson, A. W.; LaCount, R. B. Tetrahedron 1960, 9, 130; (b) Johnson, A. W.
Ylide Chemistry; Academic Press: New York, 1966; (c) Heathcock, C. H.;
Blumenkopf, T. A.; Smith, K. M. J. Org. Chem. 1989, 54, 1548.
19. (a) Ruchardt, C.; Panse, P.; Eichler, S. Chem. Ber. 1967, 100, 1144; (b) Fliszar, S.;
Hudson, R. F.; Salvadory, G. Helv. Chim. Acta 1964, 47, 159.
duced the desired Wittig olefination products due to its higher
nucleophilicity, while the triphenylphosphorus analogs were unre-
active. Both aliphatic and aromatic aldehydes are suitable sub-
strates; for low-boiling aldehydes, the olefination can be
conveniently carried out in a re-sealable pressure vessel. Applica-
tion of this protocol to the synthesis of bioactive natural products
is in progress.
20. (a) Hooper, L.; Garagan, S.; Kayser, M. M. J. Org. Chem. 1994, 59, 1126; (b) Takai,
K.; Kakiuchi, T.; Kataoka, Y.; Utimoto, K. J. Org. Chem. 1994, 59, 2668.
21. Representative procedures: The dried tributylphosphonium salt (0.65 mmol)
was placed in a re-sealable pressure vessel equipped with a side-arm under Ar.
To this were added t-BuOH (6 mL) and t-BuOK (0.78 mL of 1.0 M solution in t-
BuOH, 0.78 mmol) at rt, and the solution was refluxed for 24 h, cooled, and the
volatiles were removed in vacuo. To the residue were added MeCN or Tol
(4 mL) and aldehyde (0.73–3.3 mmol), the vessel was sealed and stirred at
100 °C for 8–24 h. After cooling, the reaction was diluted with ether (20 mL)
and washed successively with water and brine, dried (Na2SO4), concentrated,
and purified by silica gel flash column chromatography. Compound 5: 1H NMR
(CDCl3, 300 MHz) d 7.40–7.20 (m, 5H), 3.85–3.60 (m, 4H), 3.71 (s, 3H), 3.00–
2.60 (m, 4H), 2.50–2.40 (m, 1H), 2.36–2.05 (m, 6H), 1.50–1.25 (m, 12H), 1.18 (d,
J = 6.6 Hz, 3H), 0.92 (t, J = 7.1 Hz, 9H) ppm. ESI m/z (MÀBr) 436.2. Compound 9f:
1H NMR (CDCl3, 300 MHz) d 7.40–7.23 (m, 5H), 6.47 (dt, J = 9.9, 2.1 Hz, 1H),
3.75–3.60 (AB, JAB = 12.9 Hz, 2H), 3.70–3.15 (AB-d, JAB = 14.4 Hz, J = 2.4 Hz, 2H),
2.97 (ddd, J = 10.8, 5.7, 1.5 Hz, 1H), 2.62–2.50 (m, 1H), 2.50–2.35 (m, 1H), 2.33
(dd, J = 11.4, 9.6 Hz, 1H), 1.12 (d, J = 6.9 Hz, 3H), 1.01 (d, J = 3.9 Hz, 3H), 0.99 (d,
J = 3.9 Hz, 3H) ppm. 13C NMR (CDCl3, 75 MHz) d 201.3, 145.7, 137.9, 130.9,
128.8, 128.4, 127.3, 62.3, 57.4, 54.0, 42.9, 27.0, 21.8, 21.7, 14.4. HR-ESI-MS m/z
calcd for C17H23NO (M+H+) 258.1858, Found 258.1852. Compound 9j: 1H NMR
(CDCl3, 300 MHz) d 7.45 (t, J = 1.8 Hz, 1H), 7.40–7.19 (m, 9H), 3.91 (dt, J = 14.7,
1.8 Hz, 1H), 3.72–3.58 (AB, JAB = 13.2 Hz, 2H), 3.51 (dd, J = 14.7, 2.4 Hz, 1H),
2.99 (ddd, J = 11.4, 6.0, 2.1 Hz, 1H), 2.70–2.58 (m, 1H), 2.38 (dd, J = 11.4, 9.0 Hz,
1H), 1.15 (d, J = 6.9 Hz, 3H) ppm. 13C NMR (CDCl3, 75 MHz) d 201.5, 137.7,
134.8, 134.0, 133.7, 133.4, 131.4, 128.8, 128.7, 128.3, 127.3, 62.3, 57.0, 56.1,
43.2, 14.6.
Acknowledgments
The author is indebted to Professor Guo-Qiang Lin for valuable
suggestions and generous support. Financial support from the Na-
tional Natural Science Foundation of China (20602008, 20832005)
is gratefully acknowledged.
References and notes
1. (a) Yee, S. W.; Jarno, L.; Gomaa, M. S.; Elford, C.; Ooi, L.-L.; Coogan, M. P.;
McClelland, R.; Nicholson, R. I.; Evans, B. A. J.; Brancale, A.; Simons, C. J. Med.
Chem. 2005, 48, 7123; (b) Anto, R. J.; Sukumaran, K.; Kuttan, G.; Rao, M. N. A.;
Subbaraju, V.; Kutton, R. Cancer Lett. 1995, 97, 33; (c) Mai, A.; Cheng, D.;
Bedford, M. T.; Valente, S.; Nebbioso, A.; Perrone, A.; Brosch, G.; Sbardella, G.;
De Bellis, F.; Miceli, M.; Altucci, L. J. Med. Chem. 2008, 51, 2279.
2. (a) Wilson, J. E.; Fu, G. C. Angew. Chem., Int. Ed. 2006, 45, 1426; (b) Simpson, A.
F.; Bodkin, C. D.; Butts, C. P.; Armitage, M. A.; Gallagher, T. J. Chem. Soc., Perkin
Trans. 1 2000, 3047; (c) Ohta, T.; Miyake, T.; Seido, N.; Kumobayashi, H.;
Takaya, H. J. Org. Chem. 1995, 60, 357; For selected overviews: (d) Jung, M. E.. In
Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press:
Oxford, 1991; Vol. 4, p 1; (e) Lee, V. J.. In Comprehensive Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon Elsevier: Oxford, 1991; Vol. 4, p 69; (f)
22. Ashby, E. C.; Coleman, D.; Gamasa, M. J. Org. Chem. 1987, 52, 4079.
23. Lyle, G. G.; Dziark, J. J.; Connor, J. Tetrahedron 1973, 29, 4039.