2596
K. Matsuoka et al. / Tetrahedron Letters 50 (2009) 2593–2596
Figure 2. 1H NMR spectra of (a) glycomonomer 1 and (b) homopolymer 23 in D2O.
Toyokuni, T.; Dean, B.; Stroud, M.; Hakomori, S.-I. J. Biol. Chem. 1989, 264, 9476–
9484; (c) Phillips, M. L.; Nudelman, E.; Gaeta, F. C. A.; Perez, M.; Singhal, A. K.;
Hakomori, S.-I.; Paulson, J. C. Science 1990, 250, 1130–11332; (d) Hittelet, A.;
Camby, I.; Nagy, N.; Legendre, H.; Bronckart, Y.; Decaestecker, C.; Kaltner, H.;
Nifant’ev, N. E.; Bovin, N. V.; Pector, J.-C.; Salmon, I.; Gabuis, H.-J.; Kiss, R.;
Yeaton, P. Lab. Invest. 2003, 83, 777–787. and references cited therein.
2. For example, see: (a) Ball, E. G.; O’Neill, R. A.; Schultz, J. E.; Lowe, J. B.; Weston,
B. W.; Nagy, J. O.; Brown, E. G.; Hobbs, C. J.; Bednarski, M. D. J. Am. Chem. Soc.
1992, 114, 5449–5451; (b) Nicolaou, K. C.; Bockovich, N. J.; Carcanague, D. R. J.
Am. Chem. Soc. 1993, 115, 8843–8844; (c) Haselhorst, T.; Weimar, T.; Peters, T. J.
Am. Chem. Soc. 2001, 123, 10705–10714; (d) Nagai, Y.; Ito, N.; Sultana, I.; Sugai,
T. Tetrahedron 2008, 64, 9599–9606 and references cited therein.
3. For example, see: (a) Deshpande, P. P.; Danishefsky, S. J. Nature (London) 1997,
387, 164–166; (b) Thoma, G.; Patton, J. T.; Magnani, J. L.; Ernst, B.; Örlein, R.;
Duthaler, R. O. J. Am. Chem. Soc. 1999, 121, 5919–5929; (c) Buskas, T.; Li, Y.;
Boons, G.-J. Chem. Eur. J. 2005, 11, 5457–5467.
4. Nishimura, S.-I.; Matsuoka, K.; Furuike, T.; Nishi, N.; Tokura, S.; Nagami, K.;
Murayama, S.; Kurita, K. Macromolecules 1994, 27, 157–163.
5. Gibson, M. S.; Bradshaw, R. W. Angew. Chem., Int. Ed. Engl. 1968, 7, 919–930.
6. Sakairi, N.; Takahashi, S.; Wang, F.; Ueno, Y.; Kuzuhara, H. Bull. Chem. Soc. Jpn.
1994, 67, 1756–1758.
7. Matsui, H.; Furukawa, J.; Awano, T.; Nishi, N.; Sakairi, N. Chem. Lett. 2000, 326–
327.
8. Kanno, K.-I.; Kobayashi, Y.; Nishimura, S.-I.; Kuzuhara, H.; Hatanaka, K. J.
Carbohydr. Chem. 1995, 14, 481–490.
HO OH
O
OH
O
H
N
i)
O
O
HO
O
1
OH
NHAc
O
O
Me
OH
107
OH
OH 23
Scheme 3. Reagents and conditions: (i) APS, TEMED, H2O, 50 °C, 3 h, 83.5%.
of polymerization of the glycopolymer 23 was estimated to be
107 on the basis of Mw (Scheme 3).
In summary, we have successfully described preparation of a Lex
derivative via Gabriel amine synthesis and its chemical modification
to provide a water-soluble glycomonomer. Homopolymerization
using the Lex glycomonomer was performed to give a water-soluble
glycopolymer having Mw 72 KDa in high yield, which displayed
highly clustered glycoepitopes. Biological activity of the glycopoly-
mer was preliminarily examined on the basis of fluorescence mea-
surement using a plant lectin of Lotus tetragonolobus, which binds
9. Son, S.-H.; Tano, C.; Furuike, T.; Sakairi, N. Carbohydr. Res. 2009, 344, 285.
10. Zemplén, G.; Pacsu, E. Ber. 1929, 62, 1613.
to an L
-fucose residue.18 Interestingly negative sugar clustering ef-
11. Matsuoka, K.; Onaga, T.; Mori, T.; Sakamoto, J.-I.; Koyama, T.; Sakairi, N.;
Hatano, K.; Terunuma, D. Tetrahedron Lett. 2004, 45, 9383–9386.
12. (a) Hanessian, S.; Guindon, Y. Carbohydr. Res. 1980, 86, C3–C6; (b) Sakairi, N.;
Hayashida, M.; Amano, A.; Kuzuhara, H. J. Chem. Soc., Perkin Trans. 1 1990,
1301–1313.
13. Xia, J.; Srikrishnan, T.; Alderfer, J. L.; Jain, R. K.; Piskorz, C. F.; Matta, K. L.
Carbohydr. Res. 2000, 329, 561–577.
14. Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25, 212–235.
15. This alcohol was prepared from 5-bromopentanol and sodium azide by means
of usual SN2 reaction.
fect was observed since specific carbohydrate-protein interaction
was interfered by highly clustered sugar residues. Further polymer-
ization conditions including copolymerization conditions with acryl
amide are now under investigation, and the biological activities of
the glycopolymers will also be examined. The results of these exper-
iments will be reported in the near future.
16. (a) Miyagawa, A.; Kurosawa, H.; Watanabe, T.; Koyama, T.; Terunuma, D.;
Matsuoka, K. Carbohydr. Polym. 2004, 57, 441–450; (b) Matsuoka, K.; Goshu, Y.;
Takezawa, Y.; Mori, T.; Sakamoto, J.-I.; Yamada, A.; Onaga, T.; Koyama, T.;
Hatano, K.; Snyder, P. W.; Toone, E. J.; Terunuma, D. Carbohydr. Polym. 2007, 69,
326–335; (c) Matsuoka, K.; Takita, C.; Koyama, T.; Miyamoto, D.;
Yingsakmongkon, S.; Hidari, K. I. P. J.; Jampangern, W.; Suzuki, T.; Suzuki, Y.;
Hatano, K.; Terunuma, D. Bioorg. Med. Chem. Lett. 2007, 17, 3826–3830.
17. Nishimura, S.-I.; Matsuoka, K.; Kurita, K. Macromolecules 1990, 23, 4182–4184.
18. (a) Yariv, J.; Kalb, A. J.; Katchalski, E. Nature (London) 1967, 215, 890–891; (b)
Liener, I. E.; Sharon, N.; Goldstein, I. J. The Lectins; Academic Press: London,
1986; and the references cited therein.
Acknowledgment
We thank Professor Y. C. Lee of Department of Biology, the Johns
Hopkins University for valuable discussions and suggestions.
References and notes
1. For example, see: (a) Gooi, H. C.; Feizi, T.; Kapadia, A.; Knowles, B. B.; Solter, D.;
Evans, M. J. Nature (London) 1981, 292, 156–158; (b) Eggens, I.; Fenderson, B.;