Page 9 of 11
1
Journal of the American Chemical Society
2
3
4
5
6
7
8
9
Cobalt(II)-Based Metalloradical Catalysis. J. Am. Chem. Soc. 2017,
Lee, D.; Chang, S. Ir(III)-Catalyzed Mild C–H Amidation of Arenes
and Alkenes: An Efficient Usage of Acyl Azides as the Nitrogen
Source. J. Am. Chem. Soc. 2013, 135, 12861; (c) Kim, H.; Shin, K.;
Chang, S. Iridium-Catalyzed C–H Amination with Anilines at Room
Temperature: Compatibility of Iridacycles with External Oxidants.
J. Am. Chem. Soc. 2014, 136, 5904; (d) Park, Y.; Park, K. T.; Kim, J.
G.; Chang, S. Mechanistic Studies on the Rh(III)-Mediated Amido
Transfer Process Leading to Robust C–H Amination with a New
Type of Amidating Reagent. J. Am. Chem. Soc. 2015, 137, 4534; (e)
Shin, K.; Kim, H.; Chang, S. Transition-Metal-Catalyzed C–N Bond
Forming Reactions Using Organic Azides as the Nitrogen Source: A
Journey for the Mild and Versatile C–H Amination. Acc. Chem. Res.
2015, 48, 1040; (f) Hong, S. Y.; Park, Y.; Hwang, Y.; Kim, Y. B.; Baik,
M.-H.; Chang, S. Selective formation of γ-lactams via C–H
amidation enabled by tailored iridium catalysts. Science 2018, 359,
1016; (g) Hwang, Y.; Park, Y.; Kim, Y. B.; Kim, D.; Chang, S.
Revisiting Arene C(sp2)−H Amidation by Intramolecular Transfer
of Iridium Nitrenoids: Evidence for a Spirocyclization Pathway.
Angew. Chem. Int. Ed. 2018, 57, 13565.
(11) (a) 1,3-Dipolar Cycloaddition Chemistry; Padwa, A. Ed.; John
Wiley and Sons: New York, 1984; Vols 1 and 2; (b) Nitrile Oxides,
Nitrones, and Nitronates in Organic Synthesis: Novel Strategies in
Synthesis; Feuer, H., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ,
2008.
(12) Hong, S. Y.; Son, J.; Kim, D.; Chang, S. Ir(III)-Catalyzed
Stereoselective Haloamidation of Alkynes Enabled by Ligand
Participation. J. Am. Chem. Soc. 2018, 140, 12359.
(13) (a) Lei, H.; Rovis, T. Ir-Catalyzed Intermolecular Branch-
Selective Allylic C–H Amidation of Unactivated Terminal Olefins.
J. Am. Chem. Soc. 2019, 141, 2268; (b) Knecht, T.; Mondal, S.; Ye,
J.-H.; Das, M.; Glorius, F. Intermolecular, Branch-Selective, and
Redox-Neutral Cp*IrIII-Catalyzed Allylic C−H Amidation. Angew.
Chem. Int. Ed. 2019, 58, 7117.
(14) (a) Zdilla, M. J.; Abu-Omar, M. M. Mechanism of Catalytic
Aziridination with Manganese Corrole: The Often Postulated
High-Valent Mn(V) Imido Is Not the Group Transfer Reagent. J.
Am. Chem. Soc. 2006, 128, 16971; (b) Maestre, L.; Sameera, W. M.
C.; Díaz-Requejo, M. M.; Maseras, F.; Pérez, P. J. A General
Mechanism for the Copper- and Silver-Catalyzed Olefin
Aziridination Reactions: Concomitant Involvement of the Singlet
and Triplet Pathways. J. Am. Chem. Soc. 2013, 135, 1338; (c) Klotz,
K. L.; Slominski, L. M.; Riemer, M. E.; Phillips, J. A.; Halfen, J. A.
Mechanism of the Iron-Mediated Alkene Aziridination Reaction:
Experimental and Computational Investigations. Inorg. Chem.
2009, 48, 801.
139, 9164; (j) Ju, M.; Weatherly, C. D.; Guzei, I. A.; Schomaker, J.
M. Chemo- and Enantioselective Intramolecular Silver-Catalyzed
Aziridinations. Angew. Chem. Int. Ed. 2017, 56, 9944.
(6) (a) Sharpless, K. B.; Patrick, D. W.; Truesdale, L. K.; Biller, S. A.
New reaction. Stereospecific vicinal oxyamination of olefins by alkyl
imido osmium compounds. J. Am. Chem. Soc. 1975, 97, 2305; (b)
Herranz, E.; Biller, S. A.; Sharpless, K. B. Osmium-catalyzed vicinal
oxyamination of olefins by N-chloro-N-argentocarbamates. J. Am.
Chem. Soc. 1978, 100, 3596; (c) Li, G.; Angert, H. H.; Sharpless, K.
B. N-Halocarbamate Salts Lead to More Efficient Catalytic
Asymmetric Aminohydroxylation. Angew. Chem. Int. Ed. Engl.
1996, 35, 2813; (d) Rudolph, J.; Sennhenn, P. C.; Vlaar, C. P.;
Sharpless, K. B. Smaller Substituents on Nitrogen Facilitate the
Osmium-Catalyzed Asymmetric Aminohydroxylation. Angew.
Chem. Int. Ed. Engl. 1996, 35, 2810; (e) Bruncko, M.; Schlingloff,
G.; Sharpless, K. B. N-Bromoacetamide—A New Nitrogen Source
for the Catalytic Asymmetric Aminohydroxylation of Olefins.
Angew. Chem. Int. Ed. Engl. 1997, 36, 1483.
(7) (a) Donohoe, T. J.; Johnson, P. D.; Cowley, A.; Keenan, M. The
Tethered Aminohydroxylation (TA) of Cyclic Allylic Carbamates. J.
Am. Chem. Soc. 2002, 124, 12934; (b) Donohoe, T. J.; Chughtai,
M. J.; Klauber, D. J.; Griffin, D.; Campbell, A. D. N-Sulfonyloxy
Carbamates as Reoxidants for the Tethered Aminohydroxylation
Reaction. J. Am. Chem. Soc. 2006, 128, 2514; (c) Donohoe, T. J.;
Callens, C. K. A.; Thompson, A. L. Tethered Aminohydroxylation
(TA) Reaction of Amides. Org. Lett. 2009, 11, 2305.
(8) (a) Kluegge, J.; Herdtweck, E.; Bach, T. Iron(II)-Catalyzed
Chlorolactamization of γ,δ-Unsaturated Carboxylic Acids. Synlett
2004, 2004, 1199; (b) Danielec, H.; Klügge, J.; Schlummer, B.; Bach,
T. FeCl2-Catalyzed Intramolecular Chloroamination Reactions.
Synthesis 2006, 2006, 551; (c) Liu, G.-S.; Zhang, Y.-Q.; Yuan, Y.-A.;
Xu, H. Iron(II)-Catalyzed Intramolecular Aminohydroxylation of
Olefins with Functionalized Hydroxylamines. J. Am. Chem. Soc.
2013, 135, 3343; (d) Lu, D.-F.; Liu, G.-S.; Zhu, C.-L.; Yuan, B.; Xu,
H. Iron(II)-Catalyzed Intramolecular Olefin Aminofluorination.
Org. Lett. 2014, 16, 2912; (e) Lu, D.-F.; Zhu, C.-L.; Jia, Z.-X.; Xu, H.
Iron(II)-Catalyzed Intermolecular Amino-Oxygenation of Olefins
through the N–O Bond Cleavage of Functionalized
Hydroxylamines. J. Am. Chem. Soc. 2014, 136, 13186; (f) Tian, J.-
S.; Zhu, C.-L.; Chen, Y.-R.; Xu, H. Iron-Catalyzed
Diastereoselective Intramolecular Olefin Aminobromination with
Bromide Ion. Synthesis 2015, 47, 1709; (g) Lu, D.-F.; Zhu, C.-L.;
Sears, J. D.; Xu, H. Iron(II)-Catalyzed Intermolecular
Aminofluorination of Unfunctionalized Olefins Using Fluoride Ion.
J. Am. Chem. Soc. 2016, 138, 11360; (h) Zhu, C.-L.; Lu, D.-F.; Sears,
J. D.; Jia, Z.-X.; Xu, H. Practical Synthetic Procedures for the Iron-
Catalyzed Intermolecular Olefin Aminohydroxylation Using
Functionalized Hydroxylamines. Synthesis 2016, 48, 3031.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15) Of note, the formation of other complexes II, III and V also
implicates in analogous concerted processes, and the details are
described in Supporting Information.
(16) As an alternative process, the second radical cyclization of alkyl
radical iv was calculated to afford aziridine iii. This step was required
25.1 kcal/mol of enegry. See Supporting Information for details.
(17) (a) Houk, K. N. Regioselectivity and Reactivity in the 1,3-
Dipolar Cycloadditions of Diazonium Betaines (Diazoalkanes,
Azides, and Nitrous Oxide). J. Am. Chem. Soc. 1972, 94, 8953; (b)
Houk, K. N.; Sims, J.; Duke, R. E.; Strozier, R. W.; George, J. K.
Frontier Molecular Orbitals of 1,3 Dipoles and Dipolarophiles. J.
(9) Zhu, C.-L.; Tian, J.-S.; Gu, Z.-Y.; Xing, G.-W.; Xu, H. Iron(II)-
catalyzed asymmetric intramolecular olefin aminochlorination using
chloride ion. Chem. Sci. 2015, 6, 3044.
(10) (a) Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim, S. H.;
Chang, S. Rhodium-Catalyzed Intermolecular Amidation of Arenes
with Sulfonyl Azides via Chelation-Assisted C–H Bond Activation.
J. Am. Chem. Soc. 2012, 134, 9110; (b) Ryu, J.; Kwak, J.; Shin, K.;
9
ACS Paragon Plus Environment