Organometallics 2009, 28, 3621–3624 3621
DOI: 10.1021/om900148g
Synthesis, Characterization, Structure, and Selective Cu2+ Sensing
Studies of an Alkynylgold(I) Complex Containing the
Dipicolylamine Receptor
Xiaoming He, Nianyong Zhu, and Vivian Wing-Wah Yam*
Centre for Carbon-Rich Molecular and Nano-Scale Metal-Based Materials Research,
Department of Chemistry, and HKU-CAS Joint Laboratory on New Materials, The University of Hong
Kong, Pokfulam Road, Hong Kong, People’s Republic of China
Received February 24, 2009
Summary: A novel DPA-containing alkynylgold(I) complex has
been successfully synthesized and structurally characterized. The
complex has been shown to exhibit rich photoluminescence prop-
erty and to function as a selective sensor for Cu2+, as revealed by
the large UV-vis change and significant emission quenching. The
recognition event was also found to show complete reversibility,
with the revival of the luminescence signal upon addition of EDTA.
The development of gold(I) chemistry has attracted grow-
ing interest in the past two decades, due to the attractive
Au Au interactions.1,2 Gold(I) alkynyl compounds are of
3 3 3
particular interest, not only due to their stability and ease of
preparation, but also because of their rich photophysical
properties, such as photoluminescence2-6 and optical non-
linearity.7 Introduction of gold(I) to the π-conjugated un-
saturated alkynyl ligand has recently been shown to induce
long-lived phosphorescence, which allows the time-resolved
discrimination of key luminescent processes, as a result of the
heavy metal atom effect, which enhances the spin-orbital
coupling.5c,5d In addition, the d10 closed-shell electronic
configuration of gold(I) does not allow the existence of
low-lying d-d excited states, and hence the lifetime and
luminescent triplet excited states would not be affected by
an internal quenching mechanism. Due to its linear geometry
and rigidity, together with the aurophilic nature of gold, a
number of supramolecular structures based on gold(I) alky-
nyl complexes have been designed and reported by us2-4 and
others,5,6 many of which show unique luminescence proper-
*Corresponding author. E-mail: wwyam@hku.hk.
(1) (a) Schmidbaur, H. Chem. Soc. Rev. 1995, 24, 391. (b) Schmidbaur,
H. Gold Bull. 2000, 33, 3. (c) Pyykko, P. Angew. Chem., Int. Ed. 2004, 43,
¨
¨
4412. (d) Pyykko, P.; Zhao, Y. Angew. Chem., Int. Ed. 1991, 30, 604.
(e) McCleskey, T. M.; Gray, H. B. Inorg. Chem. 1992, 31, 1733.
(f) Vickery, J. C.; Olmstead, M. M.; Fung, E. Y.; Balch, A. L. Angew.
Chem., Int. Ed. 1997, 36, 1179. (g) van Zyl, W. E.; Lopez-de-Luzuriaga,
J. M.; Mohamed, A. A.; Staples, R. J.; Fackler, J. P., Jr. Inorg. Chem.
2002, 41, 4579.
(2) (a) Yam, V. W. W.; Cheng, E. C. C. Chem. Soc. Rev. 2008, 37,
1806. (b) Yam, V. W. W.; Cheng, E. C. C. Top. Curr. Chem. 2007, 281,
269.
(3) (a) Yam, V. W. W.; Choi, S. W. K. J. Chem. Soc., Dalton Trans.
1996, 4227. (b) Yam, V. W. W.; Choi, S. W. K.; Cheung, K. K.
Organometallics 1996, 15, 1734. (c) Tang, H. S.; Zhu, N.; Yam, V. W.
W. Organometallics 2006, 26, 22. (d) Yam, V. W. W.; Cheung, K. L.;
Cheng, E. C. C.; Zhu, N.; Cheung, K. K. J. Chem. Soc., Dalton Trans.
2003, 1830. (e) Yam, V. W. W.; Cheung, K. L.; Yip, S. K.; Cheung, K. K.
J. Organomet. Chem. 2003, 681, 196. (f) Yip, S. K.; Lam, W. H.; Zhu, N.;
Yam, V. W. W. Inorg. Chim. Acta 2006, 359, 3639.
(4) (a) Yip, S. K.; Cheng, E. C. C.; Yuan, L. H.; Zhou, N.; Yam, V. W.
W. Angew. Chem., Int. Ed. 2004, 43, 4954. (b) Yam, V. W. W.; Cheung,
K. L.; Yuan, L. H.; Wong, K. M. C.; Cheung, K. K. Chem. Commun.
2000, 1513. (c) Yam, V. W. W.; Yip, S. K.; Yuan, L. H.; Cheung, K. L.;
Zhou, N.; Cheung, K. K. Organometallics 2003, 22, 2630. (d) Lu, X. X.;
Li, C. K.; Cheng, E. C. C.; Zhu, N.; Yam, V. W. W. Inorg. Chem. 2004,
43, 2225.
(5) (a) Li, D.; Hong, X.; Che, C. M.; Lo, W. C.; Peng, S. M. J. Chem.
Soc., Dalton Trans. 1993, 2929. (b) Che, C. M.; Yip, H. K.; Lo, W. C.;
Peng, S. W. Polyhedron 1994, 13, 887. (c) Che, C. M.; Chao, H. Y.;
Miskowski, V. M.; Li, Y.; Cheung, K. K. J. Am. Chem. Soc. 2001, 123,
4985. (d) Chao, H. Y.; Lu, W.; Li, Y.; Chan, M. C. W.; Che, C. M.;
Cheung, K. K.; Zhu, N. J. Am. Chem. Soc. 2002, 124, 14696.
(6) (a) Mingos, D. M. P.; Yan, J.; Menzer, S.; Williams, D. J. Angew.
Chem., Int. Ed. 1995, 34, 1894. (b) Puddephatt, R. J. Coord. Chem. Rev.
2001, 216-217, 313. (c) McArdle, C. P.; Van, S.; Jennings, M. C.;
Puddephatt, R. J. J. Am. Chem. Soc. 2002, 124, 3959. (d) Irwin, M. J.;
Vittal, J. J.; Puddephatt, R. J. Organometallics 1997, 16, 3541.
(e) Vicente, J.; Chicote, M. T.; Abrisqueta, M. D.; Jones, P. G.
Organometallics 1997, 16, 5628. (f) Bruce, M. I.; Hall, B. C.; Skelton,
B. W.; Smith, M. E.; White, A. H. J. Chem. Soc., Dalton Trans. 2002,
995. (g) Abu-Salah, O. M.; Al-Ohaly, A.; Knobler, C. B. J. Chem. Soc.,
Chem.Commun. 1985, 1502. (h) Koshevoy, I. O.; Koshinen, L.; Haukka,
M.; Tunik, S. P.; Serdobintsev, P. Y.; Melnikov, A. S.; Pakkanen, T. A.
Angew. Chem., Int. Ed. 2008, 47, 3942. (i) Koshevoy, I. O.; Karttunen,
A. J.; Tunik, S. P.; Haukka, M.; Selivanov, S. I.; Melnikov, A. S.;
Serdobintsev, P. Y.; Khodorkovskiy, M. A.; Pakkanen, T. A. Inorg.
Chem. 2008, 47, 9478. (j) de la Riva, H.; Nieuwhuyzen, M.; Fierro,
C. M.; Raithby, P. R.; Male, L.; Lagunas, M. C. Inorg. Chem. 2006, 45,
1418. (k) Wei, Q. H.; Zhang, L. Y.; Yin, G. Q.; Shi, L. X.; Chen, Z. N. J.
Am. Chem. Soc. 2004, 126, 9940.
ties that are strongly influenced by the presence of Au Au
interactions.
3 3 3
In the field of supramolecular and host-guest chemistry,
there has been a growing interest in the search for host
molecules that can selectively recognize specific guest mole-
cules through measurable photophysical changes. The sen-
sing receptor for Cu2+ is of particular interest due to the fact
that this metal ion is not only a commonly found metal
pollutant but also an essential trace element in the biological
system, particularly as one of the major sources of oxidative
stress that is closely related to the neurogenerative diseases.8
However, the development of a selective sensor for Cu2+ is
rather rare,9a-9c when compared to other biologically rele-
vant metal ions, including alkali ions (Na+, K+),9d alkaline
earth metal ions (Mg2+ and Ca2+),9e and other d-block ions,
such as Zn2+ 9f,9g
Effective signal transduction plays an
.
important role in the design of ion-specific chemosensors,
and luminescence technology has been widely used due to its
high sensitivity and the simplicity of its equipment require-
ment.10 Most studies in the past on ion-controlled lumines-
cent probes were focused on organic receptors that are based
(7) Whittall, I. R.; Humphrey, M. G.; Samoc, M.; Luther-Davies, B.
Angew. Chem., Int. Ed. 1997, 36, 370.
(8) (a) Rurack, K. Spectrochim. Acta, Part A 2001, 57, 2161. (b)
Barnham, K. J.; Masters, C. L.; Bush, A. L. Nat. Rev. Drug Discovery
2004, 3, 205. (c) Pontiki, E.; Hadjipavlou-Litina, D.; Chaviara, A. T.;
Bolos, C. A. Bioorg. Med. Chem. Lett. 2006, 16, 2234.
r
2009 American Chemical Society
Published on Web 05/19/2009
pubs.acs.org/Organometallics