2670
D. Kundu et al. / Tetrahedron Letters 50 (2009) 2668–2670
2. Butler, R. N.. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C.
A proposed mechanism for the 1-substituted tetrazole-forming
W., Scriven, E. F. V., Eds.; Pergamon: Oxford, UK, 1996; Vol. 4.
3. (a) Brown, M. U.S. Patent 3,338,915, 1967; Chem. Abstr. 1968, 87299.; (b)
Ostrovskii, V. A.; Pevzner, M. S.; Kofmna, T. P.; Shcherbinin, M. B.; Tselinskii, I.
V. Targets Heterocycl. Syst. 1999, 3, 467; (c) Hiskey, M.; Chavez, D. E.; Naud, D.
L.; Son, S. F.; Berghout, H. L.; Bome, C. A. Proc. Int. Pyrotech. Semin. 2000, 27, 3;
(d) Burger, A. Prog. Drug Res. 1991, 37, 287; (e) Schelenz, T.; Schafer, W. J. Fuel
Prakt. Chem. 2000, 342, 91; (f) Ruelke, H.; Friedel, A.; Martin, E.; Kottke, K.;
Graefe, I.; Kuehmstedt, H. Pharmazie 1991, 46.
4. Singh, H.; Chawla, A. S.; Kapoor, V. K.; Paul, D.; Malhotra, R. K. Prog. Med. Chem.
1980, 17, 151.
5. (a) Zimmerman, D. M.; Olofson, R. A. Tetrahedron Lett. 1969, 58, 5081; (b)
Fallon, F. G.; Herbst, R. M. J. Org. Chem. 1957, 22, 933.
reaction is shown in Scheme 2. It is clear from the sequence of
steps that the role of indium triflate is limited to activate methoxy
groups and to cleave C–O bonds to generate carbenium ions that
are resonance stabilized by neighboring hetero atom O or N, facil-
itating sequential nucleophilic displacements by amine and azide
anions. This would explain the formation of intermediates A and
B. Indium triflate-assisted elimination of methanol from B leads
to the proposed intermediate12 C which, upon cyclization yields
the final heterocycle 2.
In comparison with the Yb(OTf)3-catalyzed reaction7b (20 mol %
catalyst, 2-methoxyethanol as solvent), In(OTf)3 has three clear
advantages—it uses only 5 mol % of catalyst in a solvent-free reac-
tion that requires less reaction time and provides improved yield.
In summary, indium triflate was found to be a novel and highly
efficient Lewis acid catalyst for the synthesis of 1-substituted-1H-
1,2,3,4-tetrazoles via the condensation of amines, trimethyl ortho-
formate, and sodium azide. The significant advantages offered by
this method are: (i) solvent-free reaction, (ii) high yields, (iii) no
waste production, (iv) non-toxic metal catalyst, and (v) simple
operation. Another advantage of this method is its efficiency for
the high yield synthesis of tetrazoles from aliphatic amines. Fur-
ther studies on the application of the present methodology to the
synthesis of biologically active compounds are under investigation.
6. (a) Kamiya, T.; Saito, Y. U.S. Patent 3,767,667, 1973; (b) Litkei, G.; Patonay, T.;
Patonay-Peli, E.; Khilya, V. P. Pharmazie 1989, 44, 791.
7. (a) Jin, T.; Kamijo, S.; Yamamoto, Y. Tetrahedron Lett. 2004, 45, 9435; (b) Su, W.;
Hong, Z.; Shan, W.; Zhang, X. Eur. J. Org. Chem. 2006, 2723; (c) Potewar, T. M.;
Siddiqui, S. A.; Lahoti, R. J.; Srinivasan, K. V. Tetrahedron Lett. 2007, 48, 1721.
8. (a) Loh, T. P.; Chua, G. L. Chem. Commun. 2006, 2739; (b) Chauhan, K. K.; Frost, C.
G. J. Chem. Soc., Perkin Trans. 1 2000, 3015; (c) Cintas, P. Synlett 1995, 1087; (d)
Podlech, J.; Maier, T. C. Synthesis 2003, 633; (e) Nair, V.; Ros, S.; Jayan, C. N.;
Pillai, B. S. Tetrahedron 2004, 60, 1959; (f) Ranu, B. C. Eur. J. Org. Chem. 2000,
2347; (g) Auge, J.; Lubin-Germain, N.; Uziel, J. Synthesis 2007, 1739; (h) Hoppe,
H. A. F.; Lloyd-Jones, G. C.; Murray, M.; Peakman, T. M.; Walsh, K. E. Angew.
Chem., Int. Ed. 1998, 37, 1545.
9. (a) Nakamura, M.; Endo, K.; Nakamura, E. Org. Lett. 2005, 7, 3279; (b) Ghosh, R.;
Maiti, S. J. Mol. Catal. A: Chem. 2007, 264, 2007.
10. (a) Ranu, B. C.; Dey, S. S.; Hajra, A. Tetrahedron 2002, 58, 2529; (b) Ranu, B. C.;
Samanta, S.; Hajra, A. Synlett 2002, 987; (c) Ranu, B. C.; Hajra, A. J. Chem. Soc.,
Perkin Trans. 1 2001, 355; (d) Ranu, B. C.; Hajra, A. J. Chem. Soc., Perkin Trans. 1
2001, 2262; (e) Ranu, B. C.; Samanta, S.; Hajra, A. J. Org. Chem. 2001, 66, 7519;
(f) Ranu, B. C.; Hajra, A.; Jana, U. Tetrahedron Lett. 2002, 41, 531; (g) Ranu, B. C.;
Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270; (h) Ranu, B. C.; Hajra, A.; Jana, U.
Org. Lett. 1999, 1, 1141; (i) Ranu, B. C.; Majee, A. J. Chem. Soc., Chem. Commun.
1997, 1225.
Acknowledgments
11. Typical procedure for the synthesis of 1-(2,3-dimethylphenyl)-1H-1,2,3,4-tetrazole
A.H. is pleased to acknowledge the financial support from DST
(Grant No. SR/FTP/CS-107/2006). We are thankful to DST-FIST
and UGC-SAP. D.K. thanks CSIR for his fellowship. We also express
our sincere thanks to Professor B. C. Ranu, Department of Chemis-
try, Indian Association for the Cultivation of Science, for his advice
and constant encouragement.
(2c):
A
mixture of 2,3-dimethylaniline (242 mg, 2 mmol), trimethyl
orthoformate (255 mg, 2.4 mmol), and sodium azide (130 mg, 2 mmol) was
stirred in presence of indium triflate (56 mg, 5 mol %) at 100 °C for 1.5 h (TLC).
After completion, the reaction mixture was diluted with cold water (5 mL) and
extracted with ethyl acetate (10 mL Â 3). The combined organic layers were
washed with brine and dried over anhydrous Na2SO4. The residue was
concentrated and recrystallized from EtOAc–hexane (9:1) to afford the pure
product as a white solid (285 mg, 88%), mp 140–141 °C. IR:
m
= 2918, 2856,
1670, 1579, 1465, 1303 cmÀ1
;
1H NMR (300 MHz, CDCl3): d 8.03 (s, 1H), 7.13–
7.08 (m, 1H), 6.98–6.91 (m, 2H), 2.34 (s, 3H), 2.24 (s, 3H); 13C NMR (75 MHz,
CDCl3): d 148.5, 143.8, 137.5, 127.5, 125.9, 125.1, 116.0, 20.4, 13.4. Anal. Calcd
for C9H10N4: C, 62.05; H, 5.79; N, 32.16. Found: C, 61.86; H, 5.61; N, 32.04.
12. Finnegan, W. G.; Henry, R. A.; Lofquist, R. J. Am. Chem. Soc. 1958, 80, 3908.
References and notes
1. (a) Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025; (b) Hobbs, H. R.; Thomas, N.
R. Chem. Rev. 2007, 107, 2786.