Inorg. Chem. 2009, 48, 6323–6325 6323
DOI: 10.1021/ic900435p
Intermediates in Reactions of Copper(I) Complexes with N-Oxides:
From the Formation of Stable Adducts to Oxo Transfer
Sungjun Hong, Aalo K. Gupta, and William B. Tolman*
Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota,
207 Pleasant Street SE, Minneapolis, Minnesota 55455
Received March 4, 2009
Reactions of copper(I) complexes of bidentate N-donor supporting
ligands with pyridine- and trimethylamine-N-oxides or PhIO were
explored. Key results include the identification of novel copper(I) N-
oxide adducts, aryl substituent hydroxylation, and bis(μ-oxo)dicop-
per complex formation via a route involving oxo transfer.
notable interest are [CuO]+ species (CuIIIO2- T CuIIO•-),
which have been invoked in catalysis by enzymes4 and
synthetic systems5,6 and characterized by theory4b-4d,7 and
in the gas phase.7b For example, ligand-supported [CuO]+
species have been postulated in order to rationalize ligand
hydroxylations observed in the decay of CuIIOOH com-
plexes,5 the O2-induced decarboxylation of copper(I) R-
ketocarboxylates,6 and reactions of copper(I) complexes with
iodosylbenzene (PhIO).5 A [CuO]+ intermediate has also
been invoked as the active species responsible for regiospe-
cific arene hydroxylations by Cu/Me3NO systems,8 via a
mechanism proposed on the basis of theory to involve O-N
bond homolysis from an isolated CuIIONMe3 complex.9
While a number of such copper(II) N-oxide complexes are
known,10 to our knowledge copper(I) variants have not been
reported. Such copper(I) N-oxide adducts are of interest
because they might provide a [CuO]+ or related species
through heterolytic N-O bond cleavage, as seen in a number
of reactions of N-oxides with other metal centers (e.g., Fe11
and Ru12). We therefore sought to investigate the reactions of
pyridine- and trialkylamine-N-oxides with copper(I) com-
plexes, using a range of supporting ligands with variable
Because copper-promoted oxidation reactions play impor-
tant roles in biology1 and catalysis,2 great effort has been
expended to uncover mechanistic information and, in parti-
cular, to identify possible copper-oxygen intermediates.3 Of
*To whom correspondence should be addressed. E-mail: wtolman@umn.
edu.
(1) (a) Solomon, E.; Sarangi, R.; Woertink, J.; Augustine, A.; Yoon, J.;
Ghosh, S. Acc. Chem. Res. 2007, 40, 581–591. (b) Solomon, E. I.; Chen, P.;
Metz, M.; Lee, S.-K.; Palmer, A. E. Angew. Chem., Int. Ed. 2001, 40, 4570–
4590. (c) Klinman, J. P. Chem. Rev. 1996, 96, 2541–2561.
(2) (a) Punniyamurthy, T.; Rout, L. Coord. Chem. Rev. 2008, 252, 134–
154. (b) Battaini, G.; Granata, A.; Monzani, E.; Gullotti, M.; Casella, L.
Adv. Inorg. Chem. 2006, 58, 185–233.
(3) Recent reviews: (a) Hatcher, L. Q.; Karlin, K. D. Adv. Inorg. Chem.
2006, 58, 131–184. (b) Itoh, S. Curr. Opin. Chem. Biol. 2006, 10, 115–122. (c)
Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013–
1045. (d) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047–1076. (e)
Suzuki, M. Acc. Chem. Res. 2007, 40, 609–617. (f) Cramer, C. J.; Tolman, W.
B. Acc. Chem. Res. 2007, 40, 601–608.
(4) (a) Crespo, A.; Marti, M. A.; Roitberg, A. E.; Amzel, L. M.; Estrin, D.
A. J. Am. Chem. Soc. 2006, 128, 12817–12828. (b) Kamachi, T.; Kihara, N.;
Shiota, Y.; Yoshizawa, K. Inorg. Chem. 2005, 44, 4226–4236. (c) Yoshizawa,
K.; Kihara, N.; Kamachi, T.; Shiota, Y. Inorg. Chem. 2006, 45, 3034–3041.
(d) Chen, P.; Solomon, E. I. J. Am. Chem . Soc. 2004, 126, 4991–5000. (e)
Evans, J. P.; Ahn, K.; Klinman, J. P. J. Biol. Chem. 2003, 278, 49691–49698.
(5) (a) Maiti, D.; Lee, D.-H.; Gaoutchenova, K.; Wurtele, C.; Holthau-
sen, M. C.; Narducci Sarjeant, A. A.; Sundermeyer, J.; Schindler, S.; Karlin,
K. D. Angew. Chem., Int. Ed. 2008, 47, 82–85. (b) Maiti, D.; Narducci
Sarjeant, A. A.; Karlin, K. D. Inorg. Chem. 2008, 47, 8736–8747. (c)
Cvetkovic, M.; Batten, S. R.; Moubaraki, B.; Murray, K. S.; Spiccia, L.
Inorg. Chim. Acta 2001, 324, 131–140. (d) Reglier, M.; Amadei, E.;
Tadayoni, R.; Waegell, B. J. Chem. Soc., Chem. Commun. 1989, 447–450.
(6) Hong, S.; Huber, S. M.; Gagliardi, L.; Cramer, C. C.; Tolman, W. B.
J. Am. Chem. Soc. 2007, 129, 14190–14192.
(7) (a) Yoshihide, N.; Kimihiko, H.; Tetsuya, T. J. Chem. Phys. 2001, 114,
7935–7940. (b) Schroder, D.; Holthausen, M. C.; Schwarz, H. J. Phys. Chem.
B 2004, 108, 14407–14416. (c) Gherman, B. F.; Tolman, W. B.; Cramer, C. J.
J. Comput. Chem. 2006, 27, 1950–1961. (d) Decker, A.; Solomon, E. I. Curr.
Opin. Chem. Biol. 2005, 9, 152–163. (e) Huber, S. M.; Ertem, M. Z.;
Aquilante, F.; Gagliardi, L.; Tolman, W. B.; Cramer, C. J. Chem. Eur. J.
2009, 15, 4886–4895.
(8) (a) Kametani, T.; Ihara, M. J. Chem. Soc., Perkin Trans. I 1980, 629–
632. (b) Capdevielle, P.; Sparfel, D.; Baranne-Lafont, J.; Cuong, N. K.;
Maumy, M. J. Chem. Soc., Chem. Commun. 1990, 565–566. (c) Reinaud, O.;
Capdevielle, P.; Maumy, M. J. Chem. Soc., Chem. Commun. 1990, 566–568.
(d) Reinaud, O.; Capdevielle, P.; Maumy, M. J. Mol. Catal. 1991, 68, L13–
L15. (e) Rousselet, G.; Capdevielle, P.; Maumy, M. Tetrahedron Lett. 1995,
36, 4999–5002.
(9) (a) Buijs, W.; Comba, P.; Corneli, D.; Pritzkow, H. J. Organomet.
Chem. 2002, 641, 71–80. (b) Comba, P.; Knoppe, S.; Martin, B.; Rajaraman,
G.; Rolli, C.; Shapiro, B.; Stork, T. Chem. Eur. J. 2008, 14, 344–357.
(10) Selected examples: (a) Hatfield, W. E.; Muto, Y.; Jonassen, H. B.;
Paschal, J. S. Inorg. Chem. 1965, 4, 97–99. (b) Richardson, H.; Wasson, J.;
Hatfield, W.; Brown, E.; Plasz, A. Inorg. Chem. 1976, 15, 2916–2920. (c)
West, D. X.; Hartley, R. J. J. Inorg. Nucl. Chem. 1981, 43, 957–961. (d)
Carlin, R. L.; De Jongh, L. J. Chem. Rev. 1986, 86, 659–680. (e) Shi, J.-M.;
Chen, J.-N.; Wu, C.-J.; Liu, L.-D. Acta Crystallogr. E 2005, 61, m2621–
m2622. (f ) van Albada, G. A.; Mutikainen, I.; Turpeinen, U.; Reedijk, J.
Inorg. Chem. Commun. 2006, 9, 441–443.
(11) Selected examples: (a) Shin, K.; Goff, H. M. J. Am. Chem. Soc. 1987,
109, 3140–3142. (b) Nee, M. W.; Bruice, T. C. J. Am. Chem. Soc. 1982, 104,
6123–6125. (c) Ostovic, D.; Knobler, C. B.; Bruice, T. C. J. Am. Chem. Soc.
1987, 109, 3444–3451. (d) Rowe, G. T.; Rybak-Akimova, E. V.; Caradonna,
J. P. Inorg. Chem. 2007, 46, 10594–10606.
(12) Gross, Z.; Ini, S. Inorg. Chem. 1999, 38, 1446–1449.
r
2009 American Chemical Society
Published on Web 05/08/2009
pubs.acs.org/IC