SCHEME 1. Regio- and Stereoselective Considerations in
the Base-Mediated Reactions of ꢀ-Allenoate 1
TBAF-Mediated Aldol Reaction of ꢀ-Allenoates:
Regio- and Stereoselective Synthesis of
(2E,4E)-4-Carbinol Alkadienoates
Jose´ C. Aponte, Gerald B. Hammond, and Bo Xu*
Department of Chemistry, UniVersity of LouisVille,
LouisVille, Kentucky 40292
bo.xu@louisVille.edu
ReceiVed March 14, 2009
intrigued by the synthesis of the 4-regioisomer, where the
carbinol substituent is strategically placed in the diene moiety
(i.e., 2). Although an obvious disconnection for the synthesis
of 2 is the aldol reaction of an extended enolate A with an
aldehyde (E+ ) RCHO) (Scheme 1), this reaction is hitherto
unknown. Herein we report a new role of allenyl enolate A as
intermediate in the regio- and stereoselective synthesis of
(2E,4E)-4-carbinol alkadienoate 2, starting from a readily
available ꢀ-allenoate 1, under very mild conditions. To the best
of our knowledge, this is the first report where ꢀ-allenoate 1
has been functionalized through trapping of an allenyl enolate
with a carbon electrophile.
The aldol reaction of ꢀ-allenoate with use of a commercial
THF solution of tetrabutylammonium fluoride (TBAF)
yielded polyfunctionalized (2E,4E)-4-carbinol alkadienoatesa
valuable building blocksin highly regio- and stereoselective
fashion.
One advantage of using ꢀ-allenoate 1 as the starting material
is that it is readily synthesized by a Claisen rearrangement of a
propargylic alcohol and an ortho ester.4 If a strong enough base
is present, the deprotonation of 1 would produce allenyl enolate
A, which, in turn, could either isomerize to the corresponding
diene 4 (structure in Table 1 footnote) and react further, or it
could react with an electrophile E+, like an aldehyde or an imine,
to give R- or γ-products 2 or 3 (Scheme 1). Although some
reactions of allenyl enolates have been studied, most of these
derived from 1,6-additions of copper reagents to alkenynones
or alkenynoates.5 Reactions of these allenyl copper enolates with
aldehydes generally favor R-products.5,6
Functionalized 2,4-alkadienoates are important building blocks
in organic chemistry; they are widely used in synthesis and a
frequent motif in natural products.1,2 In this vein, carbinol
alkadienoates would be expected to enhance the synthetic value
of 2,4-alkadienoates; indeed carbinol alkadienoates have been
intermediates in natural product syntheses, but their preparation
needed multiple steps or showed low stereoselectivity.3 We were
The reactions of dienolates are important synthetic tools.7 But
our recent focus has been the chemistry of alkynyl enolates,
(1) Selected references on 1,3-dienes as building blocks: (a) Garigipati, R. S.;
Freyer, A. J.; Whittle, R. R.; Weinreb, S. M. J. Am. Chem. Soc. 1984, 106,
7861–7867. (b) DeBoef, B.; Counts, W. R.; Gilbertson, S. R. J. Org. Chem.
2007, 72, 799–804. (c) Marcus, A. P.; Lee, A. S.; Davis, R. L.; Tantillo, D. J.;
Sarpong, R. Angew. Chem., Int. Ed. 2008, 47, 6379–6383. (d) Enders, D.; Geibel,
G.; Osborne, S. Chem.sEur. J. 2000, 6, 1302–1309. (e) Vidari, G.; Ferrino, S.;
Grieco, P. A. J. Am. Chem. Soc. 1984, 106, 3539–3548. (f) Grieco, P. A.; Collins,
J. L.; Moher, E. D.; Fleck, T. J.; Gross, R. S. J. Am. Chem. Soc. 1993, 115,
6078–6093. (g) Walker, D. P.; Grieco, P. A. J. Am. Chem. Soc. 1999, 121, 9891–
9892. (h) Holland, H. L.; Viski, P. J. Org. Chem. 1991, 56, 5226–5229. (i)
Andrade, R. B.; Martin, S. F. Org. Lett. 2005, 7, 5733–5735.
(2) (a) Chang, H.-M.; Cheng, C.-H. J. Org. Chem. 2000, 65, 1767–1773.
(b) Fu, C.; Ma, S. Org. Lett. 2005, 7, 1707–1709. (c) Krause, N.; Gerold, A.
Angew. Chem., Int. Ed. 1997, 36, 186–204. (d) Nunomoto, S.; Yamashita, Y. J.
Org. Chem. 1979, 44, 4788–91. (e) Trost, B. M.; Pinkerton, A. B.; Seidel, M.
J. Am. Chem. Soc. 2001, 123, 12466–12476. (f) Soundararajan, R.; Li, G.; Brown,
H. C. J. Org. Chem. 1996, 61, 100–104. (g) Ma, S.; Yu, F. Tetrahedron 2005,
61, 9896–9901. (h) Oshima, M.; Yamazaki, H.; Shimizu, I.; Nisar, M.; Tsuji, J.
J. Am. Chem. Soc. 1989, 111, 6280–6287.
(3) (a) Stork, G.; Nakahara, Y.; Nakahara, Y.; Greenlee, W. J. J. Am. Chem.
Soc. 1978, 100, 7775–7777. (b) Seck, M.; Franck, X.; Seon-Meniel, B.;
Hocquemiller, R.; Figade`re, B. Tetrahedron Lett. 2006, 47, 4175–4180. (c) Lai,
M. T.; Li, D.; Oh, E.; Liu, H. W. J. Am. Chem. Soc. 1993, 115, 1619–1628. (d)
Yoshikawa, K.; Inoue, M.; Hirama, M. Tetrahedron Lett. 2007, 48, 2177–2180.
(e) Paquette, L. A.; Kreilein, M. M.; Bedore, M. W.; Friedrich, D. Org. Lett.
2005, 7, 4665–4667. (f) Li, X.; Zeng, X. Tetrahedron Lett. 2006, 47, 6839–
6842. (g) Smith, A. B., III.; Walsh, S. P.; Frohn, M.; Duffey, M. O. Org. Lett.
2005, 7, 139–142.
(4) (a) Henderson, M. A.; Heathcock, C. H. J. Org. Chem. 1988, 53, 4736–
4745. (b) Ma, S.; Yu, F.; Li, Y.; Gao, W. Chem.sEur. J. 2007, 13, 247–254.
(5) (a) Fredrick, M. A.; Hulce, M. Tetrahedron 1997, 53, 10197–10226. (b)
Krause, N.; Arndt, S. Chem. Ber. 1993, 126, 261–263. (c) Hohmann, M.; Krause,
N. Chem. Ber. 1995, 128, 851–860. (d) Laux, M.; Krause, N.; Koop, U. Synlett
1996, 87–88. (e) Krause, N. Liebigs Ann. Chem. 1993, 521–525. (f) Lee, S. H.;
Shih, M. J.; Hulce, M. Tetrahedron Lett. 1992, 33, 185–188. (g) Krause, N.;
Laux, M.; Hoffmann-Ro¨der, A. Tetrahedron Lett. 2000, 41, 9613–9616. (h)
Hoffmann-Ro¨eder, A.; Krause, N. Synthesis 2006, 2143–2146.
(6) Arndt, S.; Handke, G.; Krause, N. Chem. Ber. 1993, 126, 251–259.
(7) Selected references on reaction of dienolates: (a) Denmark, S. E.; John,
R.; Heemstra, J.; Beutner, G. L. Angew. Chem., Int. Ed 2005, 44, 4682. (b)
Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. Chem. ReV. 2000, 100,
1929–1972. (c) Sickert, M.; Schneider, C. Angew. Chem., Int. Ed. 2008, 47,
3631–3634. (d) Salvador Gonzalez, A.; Gomez Arrayas, R.; Rodriguez Rivero,
M.; Carretero, J. C. Org. Lett. 2008, 10, 4335–4337. (e) Giera, D. S.; Sickert,
M.; Schneider, C. Org. Lett. 2008, 10, 4259–4262. (f) Carswell, E. L.; Snapper,
M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2006, 45, 7230–7233.
(8) Selected references on the reactions of alkynyl enolates: (a) Xu, B.;
Hammond, G. B. Angew. Chem., Int. Ed 2008, 47, 689–692. (b) Wang, W.; Xu,
B.; Hammond, G. B. Org. Lett. 2008, 10, 3713–3716. (c) Liu, L.-P.; Xu, B.;
Hammond, G. B. Org. Lett. 2008, 10, 3887–3890. (d) Yang, H.; Xu, B.;
Hammond, G. B. Org. Lett. 2008, 10, 5589–5591. (e) Liu, L.-P.; Xu, B.; Mashuta,
M. S.; Hammond, G. B. J. Am. Chem. Soc. 2008, 130, 17642–17643. (f) Miesch,
L.; Rietsch, V.; Welsch, T.; Miesch, M. Tetrahedron Lett. 2008, 49, 5053–5055.
(g) Lepore, S. D.; He, Y.; Damisse, P. J. Org. Chem. 2004, 69, 9171–9175.
10.1021/jo900567m CCC: $40.75
Published on Web 05/18/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 4623–4625 4623