5832
C. Niu et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5829–5832
Analog 23e was profiled against additional PKC family mem-
bers. While 23e had IC50 values of 330 nM and 7 nM for the inhibi-
tion of the novel isoforms PKC and PKC , respectively, it was a
weak inhibitor of PKCb (IC50 = 1.3 M), a classical isoform. No inhi-
bition of PKCf, an atypical isoform, was observed (IC50 >100 M).
Additional kinase profiling of 23e provided IC50 values of 520 nM
isopropyl analog 32 had further reduced activity with an IC50 value
of greater than 19 M for the inhibition of PKCh.
l
g
e
In summary, we have described the synthesis and biological
evaluation of the first generation of 5-vinyl-3-pyridinecarbonitriles
as PKCh inhibitors. This report identified compound 23e as a potent
PKCh inhibitor with good selectivity over PKCd. With this founda-
tion, we are continuing to develop the SAR of this series. Ongoing
efforts to further enhance the potency of this series against PKCh,
selectivity over PKCd, and optimize the physicochemical properties
of the series will be reported in due course.
l
l
for both Lyn and Lck and greater than 8
and ROCK1.
lM for MK2, p38, PDGFR,
The cellular activity of 23e was evaluated in an assay using T
cells stimulated with anti-CD3 and anti-CD28 to induce IL-2
expression.11 Analog 23e blocked the production of IL-2 with an
IC50 value of 110 nM in the T cells isolated from wild-type (WT)
mice. As was expected based on the rather selective inhibition of
PKCh, the compound had a greatly reduced activity with T cells
from PKCh KO mice (IC50 >3300 nM). It should be noted that some
of the activity in these cell assays may be due to off target activities
by 23e. In pharmaceutical profiling assays, 23e had good perme-
ability of 3.28 ꢀ 10ꢁ6 cm/s in a PAMPA format, but poor solubility
Acknowledgments
We thank the Wyeth Chemical Technology department for
compound characterization and the pharmaceutical profiling re-
sults, the Wyeth Screening Sciences department for the kinase
selectivity results, the Wyeth Discovery Synthetic Chemistry and
Chemical Development departments for the preparation of multi
gram batches of both 5 and 5-amino-4-methylindole, Zhen Lin
and Angela Bretz for the rat liver microsome half-lives, and Dr. Tar-
ek Mansour for his support.
at pH 7.4 (5 lg/mL). It also exhibited acceptable metabolic stability
in mouse and human liver microsomes with half-lives of 16 min
and 20 min, respectively.
Lastly, modification of the C-6 position of 3 by addition of an al-
kyl group is shown in Scheme 7. Bromination of 6-methylpyridone
2522 followed by treatment with 1,10-carbonyldiimidazole and
ammonium hydroxide gave pyridone 26. Subsequently, dehydra-
tion and concomitant chlorination of 26 with phosphorus oxychlo-
ride afforded the key intermediate 27. Reaction of 27 with
5-amino-4-methylindole followed by Suzuki coupling with trans-
2-phenylvinylboronic acid produced C-6 methyl substituted ana-
log 28. Treatment of 27 with lithium bis(trimethylsilyl)amide fol-
lowed by the addition of iodomethane gave intermediates 29 and
30. The desired analog 31 with an ethyl group at C-6 and 32 with
an isopropyl group at the C-6 position were prepared by the same
procedure used for the preparation of 28. The methyl substituted
analog 28 retained potency as compared to 3, with an IC50 value
of 9 nM for the inhibition of PKCh. This was accompanied by en-
hanced selectivity for PKCd (IC50 = 250 nM). However, extending
the methyl group at the C-6 position to an ethyl group, as in 31 sig-
References and notes
1. Spitaler, M.; Cantrell, D. A. Nat. Immunol. 2004, 5, 785.
2. Hayashi, K.; Altman, A. Pharmacol. Res. 2007, 55, 537.
3. Baier, G.; Telford, D.; Giampa, L.; Coggeshall, K. M.; Baier-Bitterlich, G.; Isakov,
N.; Altman, A. J. Biol. Chem. 1993, 268, 4997.
4. Salek-Ardakani, S.; So, T.; Halteman, B. S.; Altman, A.; Croft, M. J. Immunol.
2004, 173, 6440.
5. Marsland, B. J.; Soos, T. J.; Spaeth, G.; Littman, D. R.; Kopf, M. J. Exp. Med. 2004,
200, 181.
6. Healy, A. M.; Izmailova, E.; Fitzgerald, M.; Walker, R.; Hattersley, M.; Silva, M.;
Siebert, E.; Terkelsen, J.; Picarella, D.; Pickard, M. D.; LeClair, B.; Chandra, S.;
Jaffee, B. J. Immunol. 2006, 177, 1886.
7. Salek-Ardakani, S.; So, T.; Halteman, B. S.; Altman, A.; Croft, M. J. Immunol.
2005, 175, 7635.
8. Tan, S.-L.; Zhao, J.; Bi, C.; Chen, X. Y. C.; Hepburn, D. L.; Wang, J.; Sedgwick, J. D.;
Chintalacharuvu, S. R.; Na, S. J. Immunol. 2006, 176, 2872.
9. Mecklenbraeuker, I.; Saijo, K.; Zheng, N. Y.; Leitges, M.; Tarakhovsky, A. Nature
2002, 416, 860.
10. Miyamoto, A.; Nakayama, K.; Imaki, H.; Hirose, S.; Jiang, Y.; Abe, M.;
Tsukiyama, T.; Nagahama, H.; Ohno, S.; Hatakeyama, S.; Nakayama, K. I.
Nature 2002, 416, 865.
nificantly reduced the PKCh inhibitory activity (IC50 = 1.4 lM). The
11. Cole, D. C.; Asselin, M.; Brennan, A.; Czerwinski, R.; Ellingboe, J. W.; Fitz, L.;
Greco, R.; Huang, X.; Joseph-McCarthy, D.; Kelly, M. F.; Kirisits, M.; Lee, J.; Li, Y.;
Morgan, P.; Stock, J. R.; Tsao, D. H. H.; Wissner, A.; Yang, X.; Chaudhary, D. J.
Med. Chem. 2008, 51, 5958.
12. Dushin, R. G.; Nittoli, T.; Ingalls, C.; Boschelli, D. H.; Cole, D. C.; Wissner, A.; Lee,
J.; Yang, X.; Morgan, P.; Brennan, A.; Chaudhary, D. Bioorg. Med. Chem. Lett.
2009, 19, 2461.
13. Boschelli, D. H.; Wang, D.; Prashad, A. S.; Subrath, J.; Wu, B.; Niu, C.; Lee, J.;
Yang, X.; Brennan, A.; Chaudhary, D. Bioorg. Med. Chem. Lett. 2009, 19, 3623.
14. Subrath, J.; Wang, D.; Wu, B.; Niu, C.; Boschelli, D. H.; Lee, J.; Yang, X.; Brennan,
A.; Chaudhary, D. Bioorg. Med. Chem. Lett. 2009, 19, 5423.
15. Prashad, A. S.; Wang, D.; Subrath, J.; Wu, B.; Lin, M.; Zhang, M.-Y.; Kagan, N.;
Lee, J.; Yang, X.; Brennan, A.; Chaudhary, D.; Xu, X.; Leung, L.; Wang, J.;
Boschelli, D. H. Bioorg. Med. Chem. Lett. 2009, 19, 5423.
16. Boschelli, D. H.; Wu, B.; Barrios Sosa, A. C.; Chen, J.; Asselin, M.; Cole, D. C.; Lee,
J.; Yang, X.; Chaudhary, D. Bioorg. Med. Chem. Lett. 2008, 18, 2850.
17. Tumey, L. N.; Boschelli, D. H.; Lee, J.; Chaudhary, D. Bioorg. Med. Chem. Lett.
2008, 18, 4420.
O
O
Cl
COOH
CONH2
Br
Br
CN
a
b
N
H
N
H
N
25
26
27
c
d
Cl
N
Br
CN
NH
R
HN
29 R = Et
30 R = i-Pr
CN
18. Wu, B.; Boschelli, D. H.; Lee, J.; Yang, X.; Chaudhary, D. Bioorg. Med. Chem. Lett.
2009, 19, 766.
c
N
28
NH
19. Cywin, C. L.; Dahmann, G.; Prokopowicz, A. S.; Young, E. R. R.; Magolda, R. L.;
Cardozo, M. G.; Cogan, D. A.; DiSalvo, D.; Ginn, J. D.; Kashem, M. A.; Wolak, J. P.;
Homon, C. A.; Farrell, T. M.; Grbic, H.; Hu, H.; Kaplita, P. V.; Liu, L. H.; Spero, D.
M.; Jeanfavre, D. D.; O’Shea, K. M.; White, D. M.; Woska, J. R.; Brown, M. L.
Bioorg. Med. Chem. Lett. 2007, 17, 225.
HN
CN
20. Jeon, Y. T.; Gluchowski, C. WO9731636, 1997.
21. Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. Tetrahedron Lett. 1989, 30,
2129.
22. Kilbourn, E. E.; Seidel, M. C. J. Org. Chem. 1972, 37, 1145.
23. For assay protocols see Ref. 11. The IC50 values are the mean of at least two
separate determinations with typical variation of less than 30% between
replicate values. NT: compound was not tested. NA: selectivity ratio is not
available. RLM: rat liver microsome.
R
N
31 R = Et
32 R = i-Pr
Scheme 7. Reagents: (a) (1) Br2, HOAc, pyridine; (2) 1.CDI, DMF; 2. aq NH4OH; (b)
POCl3; (c) (1) 4-Me-5-NH2-indole, EtOH; (2) trans-2-phenylvinylboronic acid,
Pd(PPh3)4, aq NaHCO3, DME; (d) LiHMDS, MeI, THF.