current catalyst system. However, it has been known that
copper compounds only promote 1,4-addition of Grignard
reagent to a,b-unsaturated ketones.13 Our results showed the
transformation underwent an otherwise catalytic mechanism.
To discover which part is responsible for the catalytic process,
reference reactions with L ligand and CuCl2 were carried out.
Free ligand can generate the 1,2-addition product with
conversion of 84% and ee value of 51%, respectively
(Table 1, entry 4), while copper chloride did not work at all.
The reference reactions suggest that the transformation is
a typically organic functionality promoted process.14 The
improved enantioselectivity for 1 is attributed to the homochiral
amino group in solid 1 instead of the achiral center in L ligand.
Our results demonstrated that the incorporation of suitable
synthons in a network can generate a good catalyst. Structural
analysis of 1 revealed that the active sites exist mainly on the
surface and the small size of the pores avoids the accessibility
of substrates to active centers through the channels, which
suggest that the catalytic reaction took place on the catalyst
surface.
Angew. Chem., Int. Ed., 2007, 46, 1075; (e) T. Uemura, R. Kitaura,
Y. Ohta, M. Nagaoka and S. Kitagawa, Angew. Chem., Int. Ed.,
2006, 45, 4112; (f) S. Horike, M. Dinca, K. Tamaki and J. R. Long,
J. Am. Chem. Soc., 2008, 130, 5854.
2 (a) B. Chen, N. W. Ockwig, A. R. Millard, D. S. Contreras and
O. M. Yaghi, Angew. Chem., Int. Ed., 2005, 44, 4745; (b) M. Dinca,
A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann and J. R. Long,
J. Am. Chem. Soc., 2006, 128, 16876; (c) F. Nouar, J. F. Eubank,
T. Bousquet, L. Wojtas, M. J. Zaworotko and M. Eddaoudi,
J. Am. Chem. Soc., 2008, 130, 1833; (d) M. Latroche, S. Surble
C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, H. Lee, J. Chang,
S. H. Jhung and G. Ferey, Angew. Chem., Int. Ed., 2006, 45, 8227;
´
,
´
(e) O. K. Farha, A. M. Spokoyny, K. L. Mulfort,
M. F. Hawthorne, C. A. Mirkin and J. T. Hupp, J. Am. Chem.
Soc., 2007, 129, 12680.
3 (a) E. Y. Lee, S. Y. Jang and M. P. Suh, J. Am. Chem. Soc., 2005,
127, 6374; (b) M. Dinca and J. R. Long, J. Am. Chem. Soc., 2005,
127, 9376; (c) Y. S. Bae, O. K. Farha, A. M. Spokoyny,
C. A. Mirkin, J. T. Hupp and R. Q. Snurr, Chem. Commun.,
2008, 4135.
4 (a) D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov,
E. P. Talsi, V. P. Fedin and K. Kim, Angew. Chem., Int. Ed., 2006,
45, 916; (b) Z. Lin, A. M. Z. Slawin and R. E. Morris, J. Am.
Chem. Soc., 2007, 129, 4880; (c) J. Zhang and X. Bu, Angew.
Chem., Int. Ed., 2007, 46, 6115; (d) E. V. Anokhina, Y. B. Go,
Y. Lee, T. Vogt and A. J. Jacobson, J. Am. Chem. Soc., 2006, 128,
9957; (e) R. Vaidhyanathan, D. Bradshaw, J.-N. Rebilly,
J. P. Barrio, J. A. Gould, N. G. Berry and M. J. Rosseinsky,
Angew. Chem., Int. Ed., 2006, 45, 6495.
In summary, we have successfully synthesized a new porous
homochiral MOF constructed from serine derivate ligand
bridged copper atoms. We have observed remarkable
asymmetric catalytic activities of the current framework
structure for heterogeneous catalysis. This work established
a new strategy in the rational expandsion of one chiral center
into multitopic chiral centers, which can chelate a metal center
5 (a) S. Lee, A. B. Mallik, Z. Xu, E. B. Lobkovsky and L. Tran, Acc.
Chem. Res., 2005, 38, 251; (b) K. S. Suslick, P. Bhyrappa,
J.-H. Chou, M. E. Kosal, S. Nakagaki, D. W. Smithenry and
S. R. Wilson, Acc. Chem. Res., 2005, 38, 283; (c) P. Feng, X. Bu
and N. Zheng, Acc. Chem. Res., 2005, 38, 293.
6 (a) S. L. James, Chem. Soc. Rev., 2003, 32, 276; (b) C. Janiak,
Dalton Trans., 2003, 2781; (c) M. Oh, G. B. Carpenter and
D. A. Sweigart, Acc. Chem. Res., 2004, 37, 1; (d) S. Kitagawa,
R. Kitaura and S.-I. Noro, Angew. Chem., Int. Ed., 2004, 43, 2334.
7 (a) L. Pan, H. Liu, X. Lei, X. Huang, D. H. Olson, N. J. Turro and
J. Li, Angew. Chem., Int. Ed., 2003, 42, 542; (b) J. Zhang and
X. Bu, Chem. Commun., 2009, 206; (c) P. K. Thallapally, J. Tian,
M. R. Kishan, C. A. Fernandez, S. J. Dalgarno, P. B. McGrail,
J. E. Warren and J. L. Atwood, J. Am. Chem. Soc., 2008, 130,
16842.
as
a chiral molecular module for the construction of
porous homochiral MOFs to systematically tune heterogeneous
catalytic properties.
We are grateful for the financial support of the NSF of
China (Grant No. 20673096), Zhejiang Provincial Natural
Science Foundation of China (Grant No. R406209) and the
State Education Ministry.
Notes and references
8 Z. Jiang, Z. Liang, X. Wu and Y. Lu, Chem. Commun., 2006, 2801.
9 M. Klussmann, H. Iwamura1, S. P. Mathew, D. H. Wells, Jr.,
U. Pandya, A. Armstrong and D. G. Blackmond, Nature, 2006,
441, 621.
z Synthesis of [Cu2L2Cl2]ꢀH2O (1). Heating a mixture of CuCl2ꢀ2H2O
(17 mg, 0.1 mmol), L (9.8 mg, 0.05 mmol) and NaOH (0.01 mmol) in a
mixed solvent of EtOH (3 mL) and H2O (3 mL) at 50 1C in a capped
vial afforded blue crystals of 1 after two days, which were filtered,
washed with EtOH, Et2O and dried at room temperature (Yield: 76%
based on L). Anal. Cald for C18H22Cl2Cu2N4O7 (%): H, 3.67; C,
35.77; N, 9.27. Found: H, 3.75; C, 35.69; N, 9.16. IR (KBr pellet,
n/cmꢃ1): 1640s, 1625s, 1564w, 1454m, 1429s, 1391s, 1371m, 1350w,
1329m, 1225m, 1106w, 1053s, 1069m, 1035m, 1001m, 929m, 857m,
812m, 796w, 686m, 647w, 569w, 487m.
10 (a) E. V. Anokhina and A. J. Jacobson, J. Am. Chem. Soc., 2004,
126, 3044; (b) N. Guillou, C. Livage, M. Drillon and G. FLrey,
Angew. Chem., Int. Ed., 2003, 42, 5314; (c) R. Matsuda,
R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov,
T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata,
Y. Kawazoe and Y. Mita, Nature, 2005, 436, 238;
(d) R. Vaidhyanathan, D. Bradshaw, J.-N. Rebilly, J. P. Barrio,
J. A. Gould, N. G. Berry and M. J. Rosseinsky, Angew. Chem., Int.
Ed., 2006, 45, 6495.
y Crystal data for 1: C18H22Cl2Cu2N4O7, Mr = 604.38, monoclinic,
space group P21, a = 10.3787(2) A, b = 6.6130(1) A, c = 16.8336(2)
11 L. L. Koh, J. O. Ranford, W. T. Robinson, J. O. Svensson, A. L.
C. Tan and D. Wu, Inorg. Chem., 1996, 35, 6466.
12 A. L. Spek, PLATON, a multipurpose crystallographic tool,
A, b = 103.344(1)1, V = 1124.17(3) A, Z = 2, T = 293 K, Dc
=
1.785 g cmꢃ3, m = 2.178 mm, F(000) = 612, Flack parameter =
0.017(12), GOF = 0.989, 9767 reflections measured, 4669 unique
(Rint = 0.0262). The final R1 = 0.0371, wR2 = 0.0682 for 3721
observed reflections with I 4 2s(I) and R1 = 0.0541, wR2 = 0.0746
for all data with 304 parameters.
Utrecht University, Utrecht, The Netherlands, 2001.
13 (a) J.-P. Corbet and G. Mignani, Chem. Rev., 2006, 106, 2651;
(b) T. Punniyamurthy and L. Rout, Coord. Chem. Rev., 2008, 252,
134; (c) S. L. Jain, J. K. Joseph and B. Stain, Catal. Lett., 2007, 115,
52; (d) M. L. Kantam, V. Neeraja, B. Kavita, B. Neelima,
M. K. Chaudhuri and S. Hussain, Adv. Synth. Catal., 2005, 347, 763.
14 (a) C.-L. Cao, X.-L. Sun, Y.-B. Kang and Y. Tang, Org. Lett.,
2007, 9, 4151; (b) D. Zhang and C. Yuan, Tetrahedron, 2008, 64,
2480.
1 (a) J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon and
K. Kim, Nature, 2000, 404, 982; (b) S.-H. Cho, B. Ma,
S. T. Nguyen, J. T. Hupp and T. E. Albrecht-Schmitt, Chem.
Commun., 2006, 2563; (c) C.-D. Wu, A. Hu, L. Zhang and W. Lin,
J. Am. Chem. Soc., 2005, 127, 8940; (d) C.-D. Wu and W. Lin,
ꢁc
This journal is The Royal Society of Chemistry 2009
2398 | Chem. Commun., 2009, 2396–2398