C O M M U N I C A T I O N S
Table 3. Other N-Substituted Benzylidene Derivativesa
ature. Mechanistic studies of the present reaction are currently
underway and will be reported in due course.
Scheme 5
.
entry
X
time
disaccharide
yieldb
R:ꢀc
1
2
3
H
CF3
F
3 h
1 h
1 h
29
30
31
92%
87%
96%
10:1
9:1
9:1
a The reactions were performed with 5 mol % of Ni(4-F-PhCN)4-
c
(OTf)2 in CH2Cl2 (0.2 M). b Isolated yield. 1H NMR ratio.
Acknowledgment. This work is dedicated to Professor Paul
Grieco on the occasion of his 65th birthday and with gratitude for
his mentorship. We thank Montana State University for financial
support and Ms. Shannon Atkins for the generous gift of 13.
Scheme 3
Supporting Information Available: Experimental procedure and
compound characterization data. This material is available free of charge
References
(1) Petitou, M.; van Boeckel, C. A. A. Angew. Chem., Int. Ed. 2004, 43, 3118–
3133.
(2) Echardt, K. J. Nat. Prod. 1983, 46, 544–550.
(3) Magnet, S.; Blanchard, J. S. Chem. ReV. 2005, 105, 477–497.
(4) (a) Danishefsky, S. J.; Allen, J. R. Angew. Chem., Int. Ed. 2000, 39, 836–
837. (b) Marcaurelle, L. A.; Bertozzi, C. R. Glycobiology 2002, 12, 69R–
77R.
(5) Ferguson, M. A. J.; Williams, A. F. Annu. ReV. Biochem. 1988, 57, 285–320.
(6) (a) Banoub, J.; Boullanger, P.; Lafont, D. Chem. ReV. 1992, 92, 1167–
1195. (b) Kerns, R. J.; Wei, P. In Carbohydrate Drug Design; Klyosov,
A. A., Witczak, Z. J., Platt, D., Eds; ACS SymposiumSeries 932; American
Chemical Society: Washington, DC, 2006; pp 205-236. (c) Bongat,
A. F. G.; Demchenko, A. V. Carbohydr. Res. 2007, 342, 374–406.
(7) (a) Paulsen, H.; Kalar, C.; Stenzel, W. Chem. Ber. 1978, 111, 2358–2369.
(b) Lemieuxr, R. U.; Ratclife, R. M. Can. J. Chem. 1979, 57, 1244–1251.
(c) Paulsen, H.; Lorentzen, J. P.; Kutschker, W. Carbohydr. Res. 1985,
136, 153–176.
such as 33 (Scheme 3), a control experiment was attempted in the
absence of a nucleophilic acceptor (Scheme 4). The rearrangement of
5 was sluggish, and it took 72 h for the reaction to go to completion.
The desired trichloroacetamide 38 was obtained in 71% with excellent
R-selectivity (R:ꢀ ) 11:1).
Scheme 4
(8) (a) Benakli, K.; Zha, C.; Kerns, R. J. J. Am. Chem. Soc. 2001, 123, 9461–
9462. (b) Kerns, R. J.; Zha, C.; Benakli, K.; Liang, Y.-Z. Tetrahedron Lett.
2003, 44, 8069–8072. (c) Manabe, S.; Ishii, K.; Ito, Y. J. Am. Chem. Soc.
2006, 128, 10666–10667.
(9) Winterfeld, G. A.; Schmidt, R. R. Angew. Chem., Int. Ed. 2001, 40, 2654–
2657.
(10) Ryan, D. A.; Gin, D. Y. J. Am. Chem. Soc. 2008, 130, 15228–15229.
(11) Hardy, F. F.; Buchanan, J. G.; Baddiley, J. J. Chem. Soc. 1963, 3360–3366.
(12) (a) Watanabe, I.; Tsuchiya, T.; Takase, T.; Umezawa, S.; Umezawa, H.
Bull. Chem. Soc. Jpn. 1977, 50, 2369–2374. (b) Kouemkob, H. K.;
Iepebuukar, B. A.; Hobukoba, O. C. IzV. Akad. Nauk. SSSR, Ser. Khim.
1980, 2, 390–393.
To illustrate the potential utility of glycoconjugate products, the
following transformations were performed. Removal of the para-
methoxylbenzylidene following acetylation and sulfation furnished 39
and 40 (Scheme 5). The glycoconjugate 39 is a fully protected structure
of a TN-tumor associated antigen.4 Compound 40 is a structural
analogue of heparin derivatives.1
In summary, a general and practical method for stereoselective
synthesis of R-2-deoxy-2-amino glycosides has been developed. The
C(2)-benzylideneamino trichloroacetimidate donors can be easily
prepared in four steps starting from commercially available D-
glucosamine and D-galactosamine. These glycosyl donors are able to
couple to primary, secondary, and tertiary alcohols to provide access
to a variety of glycoconjugates with excellent R-selectivity. The
diastereoselectivity of the current nickel-catalyzed reaction depends
on the nature of the cationic nickel catalyst. The reactive sites of the
nucleophilic acceptors or the nature of the protecting groups have little
effect on the R-selectivity. Additionally, only a catalytic amount of
nickel is required for the coupling reaction to occur at room temper-
(13) Marra, A.; Sinay, P. Carbohydr. Res. 1990, 200, 319–337.
(14) Mootoo, D. R.; Konradsson, P.; Fraser-Reid, B. J. Am. Chem. Soc. 1989,
111, 8540–8542.
(15) Silva, D. J.; Wang, H.; Allanson, N. M.; Jain, R. K.; Sofia, M. J. J. Org.
Chem. 1999, 64, 5926–5929.
(16) Mensah, E. A.; Azzarelli, J. M.; Nguyen, H. M. J. Org. Chem. 2009, 74,
1650–1657.
(17) The R/ꢀ ratio was determined kinetically. The ꢀ-isomer was not converted
to the R-isomer under the reaction conditions.
(18) The R-selectivity was improved in the presence of PhSEt (1 equiv); see: Park, J.;
Kawatkar, S.; Kim, J.-H.; Boons, G.-J. Org. Lett. 2007, 9, 1959–1962.
(19) Geng, Y. G.; Zhang, L.-H.; Ye, X.-S. Chem. Commun. 2008, 597–599.
(20) Kochetkov, N. K.; Klimov, E. M.; Malysheva, N. N.; Demchenko, A. V.
Carbohydr. Res. 1993, 242, C7-C10.
(21) Boysen, M.; Gemma, E.; Lahmann, M.; Oscarson, S. Chem. Commun. 2005,
3044–3046.
(22) van Well, R. M.; Ravindranathan Kartha, K. P.; Field, R. A. J. J. Carbohydr.
Res. 2005, 24, 463–474.
(23) Kuduk, S. D.; Schwarz, J. B.; Chen, X.-T.; Glunz, P. W.; Sames, D.;
Ragupathi, G.; Livingston, P. O.; Danishefsky, S. J. J. Am. Chem. Soc.
1998, 120, 12474–12485.
JA903123B
9
8780 J. AM. CHEM. SOC. VOL. 131, NO. 25, 2009