Li-t. Dong et al. / Tetrahedron 65 (2009) 4124–4129
4129
4.3.14. Compound 4n
2339 (w), 1714 (s), 1547 (s), 1361 (m), 758 (m); MS (EI): 161
Major isomer: yellow solid. 1H NMR (400 MHz, CDCl3):
d¼7.95–
[MꢀNO2]þ. The enantiomeric excess was determined by HPLC with
7.89 (m, 2H), 7.60–7.55 (m, 1H), 7.48–7.43 (m, 2H), 7.34–7.28 (m,
an AS-H column (n-hexane/i-PrOH¼75/25,
l¼208 nm, 0.8 mL/
5H), 6.39 (d, J¼8.4 Hz, 1H), 4.42–4.35 (m, 1H), 3.76–3.59 (m, 2H);
min); tR (major enantiomer)¼15.9 min, tR (minor enantio-
mer)¼21.8 min, >99% ee.
13C NMR (100 MHz, CDCl3):
d
¼195.9, 136.5, 136.3, 133.5, 129.0,
128.7, 128.6, 128.3, 128.0, 84.1, 46.8, 40.9; IR (thin film) n :
/cmꢀ1
2349 (w), 2325 (w), 1680 (s), 1561 (s), 1350 (m), 747 (m); HRMS (EI)
calcd for C16H14OBr [MꢀNO2]þ: 301.0223, found: 301.0221. The
enantiomeric excess was determined by HPLC with an AD-H col-
Acknowledgements
We thank National Natural Science Foundation of China (No.
20772160), NCET plan of Ministry of Education of China, Guangz-
hou Bureau of Science and Technology for the financial support of
this study.
umn (n-hexane/i-PrOH¼90/10,
enantiomer)¼13.5 min, tR (minor enantiomer)¼17.5 min, 98% ee.
Minor isomer: yellow solid. 1H NMR (400 MHz, CDCl3):
l¼208 nm, 1 mL/min); tR (major
d¼7.95–
7.89 (m, 2H), 7.60–7.55 (m, 1H), 7.48–7.43 (m, 2H), 7.34–7.28 (m,
5H), 6.49 (J¼6.4 Hz, 1H), 4.42–4.35 (m, 1H), 3.76–3.59 (m, 2H); 13C
Supplementary data
NMR (100 MHz, CDCl3):
128.6, 128.5, 128.0, 85.1, 46.3, 40.5. The enantiomeric excess was
d
¼196.0, 136.4, 136.2, 133.6, 128.9, 128.8,
Supplementary data associated with this article can be found in
determined by HPLC with an AD-H column (n-hexane/i-PrOH¼90/
10,
l
¼208 nm, 1 mL/min); tR (major enantiomer)¼10.9 min, tR
(minor enantiomer)¼14.8 min, 98% ee.
References and notes
4.3.15. Compound 5
1. For the general reviews on asymmetric organocatalysis, see: (a) Tsogoeva, S. B.
Eur. J. Org. Chem. 2007, 1701; (b) Guillena, G.; Najera, C.; Ramon, D. J. Tetrahe-
dron: Asymmetry 2007, 18, 2249; (c) Dalko, P. I. Enantioselective Organocatalysis;
Wiley-VCH: Weinheim, 2007; (d) The special issue devoted to: List, B., Ed.
Asymmetric Organocatalysis. Chem. Rev. 2007, 107, 5413; (e) Yu, X. H.; Wang, W.
Chem. Asian J. 2008, 3, 516.
Major isomer: yellow solid. 1H NMR (400 MHz, CDCl3):
d
¼7.33–
7.29 (m, 3H), 7.23–7.21 (m, 2H), 4.21 (dd, J¼9.2, 4.0 Hz, 1H), 3.32–
3.24 (m, 2H), 2.19 (s, 3H), 2.08 (s, 3H); 13C NMR (100 MHz, CDCl3):
d
¼204.2, 136.0, 129.2, 128.6, 128.5, 98.7, 51.5, 45.9, 30.3, 29.5; IR
2. For the reviews on the activation of
a,b-unsaturated aldehydes and ketones
(thin film) n
/cmꢀ1: 2360 (w), 2339 (w), 1717 (s), 1553 (s), 1357 (m),
with chiral secondary amines, see: (a) Ouellet, S. G.; Walji, A. M.; Macmillan,
D. W. C. Acc. Chem. Res. 2007, 40, 1327; (b) Mielgo, A.; Palomo, C. Chem. Asian J.
2008, 3, 922; (c) Yu, X.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037; (d) Mac-
millan, D. W. C. Nature 2008, 455, 304.
3. For the reviews of primary amine catalysts, see: (a) Peng, F. Z.; Shako, Z. H.
J. Mol. Catal. A: Chem. 2008, 285, 1; (b) Bartoli, G.; Melchiorre, P. Synlett
2008, 1759; (c) Chen, Y. C. Synlett 2008, 1919; (d) Xu, L. W.; Lu, Y. X. Org.
Biomol. Chem. 2008, 6, 2047.
741 (w); HRMS (EI) calcd for C12H14NO3Br [Mþ]: 299.0152, found:
299.0148. The enantiomeric excess was determined by HPLC with
an IC column (n-hexane/i-PrOH¼90/10, ¼208 nm, 0.8 mL/min); tR
l
(minor enantiomer)¼9.4 min, tR (major enantiomer)¼10.2 min,
>99% ee.
Minor isomer: yellow solid. 1H NMR (400 MHz, CDCl3):
d
¼7.33–
4. (a) Rosini, G.; Ballini, R. Synthesis 1988, 833; (b) Ono, N. The Nitro Group in
Organic Synthesis; Wiley-VCH: New York, NY, 2001; (c) Adams, J. P. J. Chem. Soc.,
Perkin Trans. 1 2002, 2586.
7.29 (m, 3H), 7.23–7.21 (m, 2H), 4.33 (dd, J¼10.0, 3.6 Hz, 1H), 3.19–
3.05 (m, 2H), 2.19 (s, 3H), 2.09 (s, 3H); 13C NMR (100 MHz, CDCl3):
5. (a) Vakulya, B.; Varga, S.; Csa´mpai, A.; Soo´s, T. Org. Lett. 2005, 7, 1967; (b) Va-
d
¼203.8, 135.5, 129.4, 128.7, 128.5, 101.5, 50.4, 46.1, 30.2, 29.1. The
´
kulya, B.; Varga, S.; Soos, T. J. Org. Chem. 2008, 73, 3475; (c) Yamaguchi, M.;
enantiomeric excess was determined by HPLC with an IC column
Shiraishi, T.; Igarashi, Y.; Hirama, M. Tetrahedron Lett. 1994, 35, 8233; (d) Ya-
maguchi, M.; Igarashi, Y.; Reddy, R. S.; Shiraishi, T.; Hirama, M. Tetrahedron
1997, 53, 11223; (e) Keller, E.; Veldman, N.; Spek, A. L.; Feringa, B. L. Tetrahedron:
Asymmetry 1997, 8, 3403; (f) Funabashi, K.; Saida, Y.; Kanai, M.; Arai, T.; Sasai,
H.; Shibasaki, M. Tetrahedron Lett. 1998, 39, 7557.
6. (a) Hansen, H. M.; Longbottom, D. A.; Ley, S. V. Chem. Commun. 2006, 4838; (b)
Wascholowski, V.; Hansen, H. M.; Longbottom, D. A.; Ley, S. V. Synthesis 2008,
1269.
7. Zhang, J. M.; Hu, Z. P.; Dong, L. T.; Xuan, Y. N.; Lou, C. L.; Yan, M. Tetrahedron:
Asymmetry 2009, 20, 355.
8. Vesely, J.; Zhao, G. L.; Bartoszewicz, A.; Co´rdova, A. Tetrahedron Lett. 2008, 49,
4209.
9. Lv, J.; Zhang, J. M.; Lin, Z.; Wang, Y. M. Chem.dEur. J. 2009, 15, 972.
10. For the selected examples of asymmetric catalysis by primary amines derived
from cinchona alkaloids, see: (a) Xie, J. W.; Chen, W.; Li, R.; Zeng, M.; Du, W.;
Yue, L.; Chen, Y. C.; Wu, Y.; Zhu, J.; Deng, J. G. Angew. Chem., Int. Ed. 2007, 46,
389; (b) Xie, J. W.; Yue, L.; Chen, W.; Du, W.; Zhu, J.; Deng, J. G.; Chen, Y. C. Org.
Lett. 2007, 9, 413; (c) Liu, T. Y.; Cui, H. L.; Zhang, Y.; Jiang, K.; Du, W.; He, Z. Q.;
Chen, Y. C. Org. Lett. 2007, 9, 3671; (d) Chen, W.; Du, W.; Duan, Y. Z.; Wu, Y.;
Yang, S. Y.; Chen, Y. C. Angew. Chem., Int. Ed. 2007, 46, 7667; (e) Chen, W.; Du,
W.; Yue, L.; Li, R.; Wu, Y.; Ding, L. S.; Chen, Y. C. Org. Biomol. Chem. 2007, 5, 816;
(f) Bartoli, G.; Bosco, M.; Carlone, A.; Pesciaioli, F.; Sambri, L.; Melchiorre, P. Org.
Lett. 2007, 9, 1403; (g) Carlone, A.; Bartoli, G.; Bosco, M.; Pesciaioli, F.; Ricci, P.;
Sambri, L.; Melchiorre, P. Eur. J. Org. Chem. 2007, 5492; (h) Ricci, P.; Carlone, A.;
Bartoli, G.; Bosco, M.; Sambri, L.; Melchiorre, P. Adv. Synth. Catal. 2008, 350, 49;
(i) Li, X. F.; Cun, L. F.; Lian, C. X.; Zhong, L.; Chen, Y. C.; Liao, J.; Zhu, J.; Deng, J. G.
Org. Biomol. Chem. 2008, 6, 349; (j) Kang, T. R.; Xie, J. W.; Du, W.; Feng, X.; Chen,
Y. C. Org. Biomol. Chem. 2008, 6, 2673; (k) Tan, B.; Chua, P. J.; Li, Y. X.; Zhong, G. F.
Org. Lett. 2008, 10, 2437; (l) Tan, B.; Shi, Z. G.; Chua, P. J.; Zhong, G. F. Org. Lett.
2008, 10, 3425; (m) Tan, B.; Chua, P. J.; Zeng, X. F.; Lu, M.; Zhong, G. F. Org. Lett.
2008, 10, 3489; (n) Wang, X. W.; Reisinger, C. M.; List, B. J. Am. Chem. Soc. 2008,
130, 6070; (o) Li, X. J.; Liu, Y.; Sun, B. F.; Cindric, B.; Deng, L. J. Am. Chem. Soc.
2008, 130, 8134; (p) Lu, X. J.; Deng, L. Angew. Chem., Int. Ed. 2008, 47, 7710.
11. Huang, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 7170.
(n-hexane/i-PrOH¼90/10,
l¼208 nm, 0.8 mL/min); tR (minor
enantiomer)¼12.4 min, tR (major enantiomer)¼13.7 min, >99% ee.
4.3.16. Compound 6
20
Yellow oil. [
CDCl3):
a
]
¼þ14.0 (c 1.5, CHCl3); 1H NMR (400 MHz,
D
d
¼7.30–7.27 (m, 3H), 7.25–7.22 (m, 2H), 4.21 (dd, J¼8.4,
6.0 Hz, 1H), 3.24–3.23 (m, 2H), 2.09 (s, 3H), 2.57–2.48 (m, 1H), 2.19–
2.10 (m, 1H), 1.08 (t, J¼6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3):
d
¼204.4, 136.3, 129.2, 128.5, 111.0, 51.0, 46.6, 35.7, 30.5, 10.1; IR (thin
film) n
/cmꢀ1: 2349 (w), 2339 (w), 1721 (s), 1557 (s), 1418 (w), 1357
(m), 816 (w); HRMS (EI) calcd for C13H16NO3Br [Mþ]: 313.0308,
found: 313.0309. The enantiomeric excess was determined by HPLC
with an IC column (n-hexane/i-PrOH¼75/25, ¼208 nm, 0.5 mL/
l
min); tR (minor enantiomer)¼10.0 min, tR (major enantio-
mer)¼11.1 min, >99% ee.
4.4. Experimental procedure for the debromination of 4a14
Under nitrogen atmosphere, a solution of 4a (57.2 mg, 0.2 mmol,
dr: 57:43, ee: >99%/>99%), Bu3SnH (65 mL, 0.24 mmol), and AIBN
(6.7 mg, 0.04 mmol) in dry toluene (1.5 mL) was sealed in a quartz
tube. The solution was irradiated with a UV lamp for 10 h. The
solvent was removed under vacuum and the residue was purified
by flash column chromatography over silica gel (EtOAc/petroleum
20
ether) to give 7 as a white solid (35.6 mg, 86% yield). [
a
]
¼þ2.0 (c
D
3.0, CHCl3); mp: 118–119 ꢁC; 1H NMR (400 MHz, CDCl3):
d¼7.35–
12. Brunner, H.; Bu¨ gler, J.; Nuber, B. Tetrahedron: Asymmetry 1995, 6, 1699.
13. The diastereoisomers of 4 and 5 are inseparable by column chromatography.
Their 1H NMR and 13C NMR data were obtained by analyzing the NMR spectra
of the mixtures. However, IR and MS spectroscopic data could not be assigned
individually for them.
7.27 (m, 3H), 7.23–7.21 (m, 2H), 6.70 (dd, J¼6.8, 12.4 Hz, 1H), 4.60
(dd, J¼8.0, 12.0 Hz, 1H), 4.05–3.97 (m, 1H), 2.92 (d, J¼6.8 Hz, 2H),
2.12 (s, 3H); 13C NMR (100 MHz, CDCl3):
d
¼205.4, 138.8, 129.0,
127.9, 127.3, 79.4, 46.1, 39.0, 30.3; IR (thin film)
n
/cmꢀ1: 2360 (w),
14. Blay, G.; Herna´ndez-Olmos, V.; Pedro, J. R. Chem. Commun. 2008, 4840.