3608 Organometallics 2009, 28, 3608–3610
DOI: 10.1021/om900319a
Visible Light Enhanced Selective Reductive Elimination of a
Methylmanganese Complex from a Heterodinuclear Dimethylphenyl-
(4,40-di-tert-butyl-2,20-bipyridine)platinum-Pentacarbonylmanganese
Complex
Sanshiro Komiya,* Sei Ezumi, Nobuyuki Komine, and Masafumi Hirano
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and
Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
Received April 27, 2009
Summary: Novel visible light induced reductive elimination of
a heterodinuclear triorganoplatinum-manganese complex,
(tBu2bpy)Me2PhPt-Mn(CO)5, gives a methylmanganese
complex, MnMe(CO)5, and a methylphenylplatinum com-
plex, PtMePh(tBu2bpy).
C-C bond forming reductive elimination is the most well
studied both experimentally4 and theoretically.5 Other reduc-
tive elimination processes involving hetero elements are also
intrinsically of importance in various catalyses promoted by
transition-metal complexes.6 We previously reported the
reversible alkyl group transfer reaction of heterodinuclear
organotransition-metal complexes,7 which is regarded as
reductive elimination of an organotransition-metal complex
from the dinuclear complex. We wish to report here novel
visible light enhanced reductive elimination of a methylman-
ganese complex under ambient conditions from heterodinuc-
lear triorganoplatinum-manganese complexes.
Use of light energy in controlling the selectivity and activity
of chemical reactions is a highly fascinating method, but it is in
generally very difficult, since irradiation frequently causes
homolytic bond cleavage, dissociation of ligands, etc. or
sometimes even luminescence.1,2 On the other hand, reductive
elimination is one of the most important key steps in organo-
transition-metal chemistry in relation to transition-metal-
mediated organic reactions and catalyses.3 Among them,
A series of (2,20-bipyridine)- or (4,40-di-tert-butyl-2,20-bipyr-
idine)triorganoplatinum-manganese pentacarbonyl com-
plexes were prepared by the simple metathetical reactions of
the corresponding triorgano(nitrato)platinum(IV) species
with sodium pentacarbonylmanganate in THF (eq 1).
*To whom correspondence should be addressed. E-mail: komiya@
cc.tuat.ac.jp.
(1) (a) Geoffroy, G. L.; Wringhton, M. S. Organometallic Photo-
chemistry; Academic Press: New York, 1979. (b) Charles, K., Serpone, N.
Eds. Photosensitive Metal-Organic Systems-Mechanistic Principles and
Applications; American Chemical Society: Washington, DC, 1993;
Advances in Chemistry Series 238.
(2) Inagaki, A.; Nakagawa, H.; Akita, M.; Inoue, K.; Sakai, M.;
Fujii, M. Dalton Trans. 2008, 6709–6723 and references therein.
(3) (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G.
Principles and Applications of Organotransition Metal Chemistry;
University Science Books: Mill Valley, CA, 1987. (b) Atwood, J. D.
Inorganic and Organometallic Reaction Mechanisms, 2nd ed.; Wiley-VCH:
New York, 1997. (c) Crabtree, R. H. The Organometallic Chemistry of the
Transition Metals, 3rd ed.; Wiley: New York, 2001. (d) Parshall, G. W.; Ittel,
S. D. Homogeneous Catalysis: The Applications and Chemistry of Catalysis
by Soluble Transition Metal Complexes, 2nd ed.; Wiley-Interscience:
New York, 1992.
(4) (a) Yamamoto, T.; Yamamoto, A.; Ikeda, S. J. Am. Chem. Soc.
1971, 93, 3350–3359. (b) Lau, J.; Sustmann, R. Tetrahedron Lett. 1985,
26, 4907–4910. (c) Sustmann, R.; Lau, L. Chem. Ber. 1986, 119,
2531–2541. (d) Ozawa, F. Reductive Elimination. In Fundamentals of
Molecular Catalysis; Kurosawa, H., Yamamoto, A., Eds.; Elsevier:
New York, 2003; Vol. 3, pp 479-511, and references therein.
(5) (a) Tatsumi, K.; Hoffmann, R.; Yamamoto, A.; Stille, J. K. Bull.
Chem. Soc. Jpn. 1981, 54, 1857–1867. (b) Low, J. J.; Goddard, W. A.III
J. Am. Chem. Soc. 1986, 108, 6115–6128. (c) Ananikov, V. P.; Musaev,
D. G.; Morokuma, K. Organometallics 2005, 24, 715–723. (d) Zuidema,
E.; Van Leeuwen, P. W. N. M.; Bo, C. Organometallics 2005, 24, 3703–
3710. (e) Yandulov, D. V.; Tran, N. T. J. Am. Chem. Soc. 2007, 129,
1342–1358. (f) Ananikov, V. P.; Musaev, D. G.; Morokuma, K. Eur. J.
Inorg. Chem. 2007, 5390–5399. (g) Michel, C.; Laio, A.; Mohamed, F.;
Krack, M.; Parrinello, M.; Milet, A. Organometallics 2007, 26, 1241–
In these heterodinuclear complexes, a large R2 group is
always placed trans to Mn, probably due to steric hindrance
between the square-planar Pt coordination plane and the four
equatorial carbonyl ligands at Mn. 1a in THF shows two
absorption bands at 533 (ε = 2900 M-1 cm-1) and 325 nm
(ε = 15000 M-1 cm-1), which are ascribed to MLCT bands
from the HOMO orbital based on the Pt-Mn bond to the
LUMOassignable to twoemptyπ* orbitalsof the bpy ligand.8
(6) (a) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852–860. (b) Hartwig,
J. F. Angew. Chem., Int. Ed. 1998, 37, 2046–2067.
(7) (a) Komiya, S.; Endo, I. Chem. Lett. 1988, 1709–1712.
(b) Fukuoka, A.; Sadashima, T.; Endo, I.; Ohashi, N.; Kambara, Y.;
Sugiura, T.; Komiya, S. Organometallics 1994, 13, 4033–4044.
(c) Fukuoka, A.; Sadashima, T.; Sugiura, T.; Wu, X.; Mizuho, Y.;
Komiya, S. J. Organomet. Chem. 1994, 473, 139–147. (d) Komine, N.;
Hoh, H.; Hirano, M.; Komiya, S. Organometallics 2000, 19, 5251–5253.
(8) DFT calculations of 1a and 1c and their corresponding products,
which were performed by using Spartan 06 Windows from Wavefunc-
tion, Inc. at the B3LYP/LACVP/6-31G* level of theory, reveal that
reductive elimination of the former is endothermic but that of the latter is
exothermic. The calculated wavelengths of two MLCT bands of 1a were
554 and 400 nm. See the Supporting Information.
ꢀ
1249. (h) Perez-Rodrıguez, M.; Braga, A. A. C.; Garcia-Melchor, M.;
´
Perez-Temprano, M. H.; Casares, J. A.; Ujaque, G.; de Lera, A. R.;
ꢀ
ꢀ
Alvarez, R.; Maseras, F.; Espinet, P. J. Am. Chem. Soc. 2009, 131, 3650–
3657.
r
2009 American Chemical Society
pubs.acs.org/Organometallics
Published on Web 05/28/2009