Article
Organometallics, Vol. 28, No. 13, 2009 3883
addition reactions of amines to nitriles,8 cross-Aldol
reactions,9 dimerization of terminal alkynes,10 hydrosilyla-
tion,11 hydroboration,12 Tishchenkoaldehydedimerization,13
and hydroalkoxylation14 have shown a wide application of the
rare earth metal amides as catalysts or precatalysts in organic
synthesis. Although stoichiometrically insertion of isocyanate
to the rare earth metal Ln-C, Ln-N, Ln-O, and Ln-S
bonds to produce the corresponding insertion products has
been extensively studied,15 lanthanocene complexes Cp2-
LnNiPr2(THF)16a (Cp0 = MeC5H4, Ln = Y, Er, Yb) or
Cp2LnCl/n-BuLi16b as catalysts or catalytic systems for cyclo-
trimerization of phenyl isocyanate are documented. Selective
transformation of the isocyanates to their corresponding
cyclodimerization or cyclotrimerization products with cyclo-
pentadienyl-free rare earth metal amides as catalysts is far less
explored.17
As we know, isocyanates can undergo cyclodimerization,
cyclotrimerization, and polymerization in the presence of
catalysts. Investigation of catalysts that can selectively
catalyze the cyclodimerization, cyclotrimerization, or poly-
merization of isocyanates is one active topic of modern
chemistry. Triaryl isocyanurates are known to improve
the stability of polyurethane networks with respect to
thermal resistance, flame retardation, chemical resistance,
and film-forming characteristics.18 Different isocyanate
Figure 1. Molecular structure of complex 1.
cyclotrimerization catalysts have been reported with a ma-
jority of the conventional catalysts being anions or neutral
Lewis bases.18 Some metal-based catalysts have been de-
scribed, and a Lewis acid pathway could be envisioned for
these systems.19 Conventional catalysts for isocyanurate for-
mation suffer from low activity, necessitating severe condi-
tions, and poor selectivity, resulting in byproducts and
difficulties in separating the catalysts from the products.
However, lanthanide complexes have displayed advantages
for this transformation.16,17 Selective transformation of iso-
cyanates to substituted ureas after elimination of CO from the
cyclodimerization products still needs further exploration.
We have observed that rare earth metal complexes sup-
ported by a diamido ligand with a CH2Me2Si link are
excellent catalysts for the cyclotrimerization of aryl isocya-
nates to yield triaryl isocyanurates with a high selectivity.17
In an effort to elucidate the generality of this observation and
the features that dictate the activity and selectivity in this
reaction, we have extended the complexes employed in this
reaction to include rare earth metal complexes incorporating
dimethylsilylene-bridged diamido ligands. We report herein
the synthesis, characterization, and catalytic activity of a
series of rare earth metal amides, and the selective reactivity
of different metal-nitrogen bonds will also be reported for
the first time.
(8) Wang, J.; Xu, F.; Cai, T.; Shen, Q. Org. Lett. 2008, 10, 445–448.
(9) Zhang, L.; Wang, S.; Sheng, E.; Zhou, S. Green Chem. 2005, 7,
683–686.
(10) (a) Komeyama, K.; Kawabata, T.; Takehira, K.; Takaki, K. J.
Org. Chem. 2005, 70, 7260–7266. (b) Nishiura, M.; Hou, Z.; Wakatsuki,
Y.; Yamaki, T.; Miyamoto, T. J. Am. Chem. Soc. 2003, 125, 1184–1185.
(c) Nishiura, M.; Hou, Z. J. Mol. Catal. A 2004, 213, 101–106.
(11) (a) Horino, Y.; Livinghouse, T. Organometallics 2004, 23, 12–14.
(b) Gountchev, T.; Tilley, T. D. Organometallics 1999, 18, 5661–5667.
(12) Horino, Y.; Livinghouse, T.; Stan, M. Synlett 2004, 2639–2641.
(13) (a) Chen, Y. H.; Zhu, Z. Y.; Zhang, J.; Shen, J. Z.; Zhou, X. G. J.
Organomet. Chem. 2005, 690, 3783–3789. (b) Burgstein, M. R.; Berberich,
H.; Roesky, P. W. Chem.;Eur. J. 2001, 7, 3078–3085. (c) Berberich, H.;
Roesky, P. W. Angew. Chem., Int. Ed. 1998, 37, 1569–1571.
(14) (a) Yu, X.; Seo, S.; Marks, T. J. J. Am. Chem. Soc. 2007, 129,
7244–7245. (b) Seo, S.; Yu, X.; Marks, T. J. J. Am. Chem. Soc. 2009, 131,
263–276.
(15) (a) Zhang, J.; Ruan, R. Y.; Shao, Z. H.; Cai, R. F.; Weng, L. H.;
Zhou, X. Organometallics 2002, 21, 1420. (b) Zhang, J.; Cai, R. F.;
Weng, L. H.; Zhou, X. J. Organomet. Chem. 2003, 672, 94. (c) Zhang, J.;
Cai, R. F.; Weng, L. H.; Zhou, X. Organometallics 2003, 22, 5385. (d)
Zhang, J.; Cai, R. F.; Weng, L. H.; Zhou, X. Organometallics 2004, 23,
3303. (e) Zhang, J.; Ma, L. P.; Cai, R. F.; Weng, L. H.; Zhou, X.
Organometallics 2005, 24, 738. (f) Zhang, J.; Zhou, X.; Cai, R. F.; Weng,
L. H. Inorg. Chem. 2005, 44, 716. (g) Zhang, C. M.; Liu, R. T.; Zhang, J.;
Chen, Z. X.; Zhou, X. Inorg. Chem. 2006, 45, 5867. (h) Wang, H. P.; Li,
H. W.; Xie, Z. W. Organomatallics 2003, 22, 4522. (i) Shen, Q.; Li, H.;
Yao, C.; Yao, Y.; Zhang, L.; Yu, K. Organometallics 2001, 20, 3070–
3073. (j) Xu, X.; Qi, R.; Xu, B.; Yao, Y.; Nie, K.; Zhang, Y.; Shen, Q.
Polyhedron 2009, 28, 574–578.
Results and Discussion
Synthesis and Characterization of Rare Earth Metal Com-
plexes with Different Metal-Nitrogen Bonds. Treatment
of (Me2Si)[(2,6-R21-4-R2-C6H2)NH]2 with [(Me3Si)2N]3L-
n
III(μ-Cl)Li(THF)3 in toluene, after workup, produced the
rare earth metal complexes {(Me2Si)[(2,6-R12-4-R2-C6H2)-
N]2}LnN(SiMe3)2(THF) (R1 = iPr, R2 = H, Ln = Yb (1),
Y(2), Eu (3), Sm (4), Nd (5); R1 =R2 =H,Ln=Yb(6), Sm (7))
in good yields. The structures of the complexes 1, 2, 4,
and 5 were additionally determined by single-crystal X-ray
diffraction study. These complexes are sensitive to moisture,
but they are stable in an inert atmosphere for months.
They are soluble in THF, DME, CH2Cl2, and toluene, but
complexes 6 and 7 are only slightly soluble in n-hexane.
X-ray analyses revealed that complexes 1, 2, 4, and 5 are
neutral compounds supported by a dimethylsilylene-bridged
diamido ligand, an amido ligand N(SiMe3)2, and a coordi-
nated THF molecule (the representative structure of the
complexes is shown in Figure 1; figures for complexes 2, 4,
(16) (a) Mao, L.; Shen, Q.; Xue, M.; Sun, J. Organomatallics 1997, 16,
3711. (b) Zhou, X.; Zhang, L.; Zhu, M.; Cai, R.; Weng, L. Organome-
tallics 2001, 20, 5700.
(17) Wu, Y.; Wang, S.; Zhu, X.; Yang, G.; Wei, Y.; Zhang, L.; Song,
H. Inorg. Chem. 2008, 47, 5503–5511.
(18) (a) Tang, J.; Verkade, J. G. Angew. Chem., Int. Ed. Engl. 1993,
32, 896. (b) Tang, J.; Mohan, T.; Verkade, J. G. J. Org. Chem. 1994, 59,
4931. (c) Spirkova, M.; Kubin, M.; Spacek, P.; Krakovsky, I.; Dusek, K.
J. Appl. Polym. Sci. 1994, 53, 1435. (d) Spirkova, M.; Kubin, M.; Spacek,
P.; Krakovsky, I.; Dusek, K. J. Appl. Polym. Sci. 1994, 52, 895. (e)
Nambu, Y.; Endo, T. J. Org. Chem. 1993, 58, 1932. (f) Mizura, J.;
Yokozawa, T.; Endo, T. J. Polym. Sci., Polym. Chem. 1991, 29, 1545.
(19) (a) Srinivas, B.; Chang, C.-C.; Chen, C.-H.; Chiang, M. Y.;
Chen, I.-T.; Wang, Y.; Lee, G.-H. J. Chem. Soc., Dalton Trans. 1997,
957. (b) Foley, S. R.; Zhou, Y.; Yap, G. P. A.; Richeson, D. S. Inorg.
Chem. 2000, 39, 924–929. (c) Paul, F.; Moulin, S.; Piechaczyk, O.; Le
Floch, P.; Osborn, J. J. Am. Chem. Soc. 2007, 129, 7294-7304, and
references therein.