2916
K. Daragics, P. Fügedi / Tetrahedron Letters 50 (2009) 2914–2916
Table 5
References and notes
Reductive cleavage of 1,3-dioxolane-type benzylidene acetals with BH3ÁTHF-TMSOTf
1. Garegg, P. J. In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel
Dekker: New York, NY, USA, 1997; pp 53–67.
Entry
Substrate
Product
Isolated yield (%)
OBn
2. (a) Bhattacharjee, S. S.; Gorin, P. A. J. Can. J. Chem. 1969, 47, 1195–1206; (b)
Lipták, A.; Jodál, I.; Nánási, P. Carbohydr. Res. 1975, 44, 1–11; (c) Fügedi, P.;
Lipták, A.; Nánási, P.; Szejtli, J. Carbohydr. Res. 1982, 104, 55–67.
3. (a) Mikami, T.; Asano, H.; Mitsunobu, O. Chem. Lett. 1987, 2033–2036; (b)
Tanaka, N.; Ogawa, I.; Yoshigase, S.; Nokami, J. Carbohydr. Res. 2008, 343, 2675–
2679.
4. (a) Ek, M.; Garegg, P. J.; Hultberg, H.; Oscarson, S. J. Carbohydr. Chem. 1983, 2,
305–311; (b) Fügedi, P.; Birberg, W.; Garegg, P. J.; Pilotti, Å. Carbohydr. Res.
1987, 164, 297–312.
5. (a) Oikawa, M.; Liu, W.-C.; Nakai, Y.; Koshida, S.; Fukase, K.; Kusumoto, S.
Synlett 1996, 1179–1180; (b) Tanaka, K.; Fukase, K. Synlett 2007, 164–166.
6. Ghosh, M.; Dulina, R. G.; Kakarla, R.; Sofia, M. J. J. Org. Chem. 2000, 65, 8387–
8390.
OBn
Me
O
O
Me
BnO
BnO
BnO
OH
1
88
O
O
Ph H
38
39
OBn
OBn
Me
BnO
O
Me
O
BnO
O
HO
2
69
O
OBn
H Ph
7. (a) Sakagami, M.; Hamana, H. Tetrahedron Lett. 2000, 41, 5547–5551; (b) Dilhas,
A.; Bonnaffé, D. Tetrahedron Lett. 2004, 45, 3643–3645.
40
41
8. Chandrasekhar, S.; Reddy, Y. R.; Reddy, C. R. Chem. Lett. 1998, 1273–1274.
9. (a) Guindon, Y.; Girard, Y.; Berthiaume, S.; Gorys, V.; Lemieux, R.; Yoakim, C.
Can. J. Chem. 1990, 68, 897–902; (b) Jiang, L.; Chan, T.-H. Tetrahedron Lett. 1998,
39, 355–358; (c) Hernandez-Torres, J. M.; Achkar, J.; Wei, A. J. Org. Chem. 2004,
69, 7206–7211; (d) Wang, C.-C.; Luo, S.-Y.; Shie, C.-R.; Hung, S.-C. Org. Lett.
2002, 4, 847–849; (e) Shie, C.-R.; Tzeng, Z.-H.; Kulkarni, S. S.; Uang, B.-J.; Hsu,
C.-Y.; Hung, S.-C. Angew. Chem., Int. Ed. 2005, 44, 1665–1668; (f) Tani, S.;
Sawadi, S.; Kojima, M.; Akai, S.; Sato, K. Tetrahedron Lett. 2007, 48, 3103–3104.
10. (a) Garegg, P. J.; Hultberg, H. Carbohydr. Res. 1981, 93, C10–C11; (b) Garegg, P.
J.; Hultberg, H.; Wallin, S. Carbohydr. Res. 1982, 108, 97–101.
11. Zinin, A. I.; Malysheva, N. N.; Shpirt, A. M.; Torgov, V. I.; Kononov, L. O.
Carbohydr. Res. 2007, 342, 627–630.
12. (a) DeNinno, M. P.; Etienne, J. B.; Duplantier, K. C. Tetrahedron Lett. 1995, 36,
669–672; (b) Debenham, S. D.; Toone, E. J. Tetrahedron: Asymmetry 2000, 11,
385–387.
The BH3ÁTHF–TMSOTf reagent proved to also be effective for the
ring opening of other benzylidene-type acetals. Reactions of
p-methoxybenzylidene and 1-naphthylmethylene acetals afforded
the p-methoxybenzyl (PMB) and 1-naphthylmethyl (1NAP) ethers,
respectively, in high yields and regioselectively (Table 4). In the
case of reduction of p-methoxybenzylidene acetals, reactions could
be performed using BH3ÁTHF without TMSOTf.
The reagent system is also applicable for the reductive cleavage
of 1,3-dioxolane-type benzylidene acetals (Table 5). As with other
reagents, the regioselectivity in this case was determined by the
configuration of the acetal carbon.10b,13,18
13. Sherman, A. A.; Mironov, Y. V.; Yudina, O. N.; Nifantiev, N. E. Carbohydr. Res.
2003, 338, 697–703.
14. Daragics, K.; Fügedi, P. In 13th European Carbohydrate Symposium, Bratislava,
Slovakia, August 21–26, 2005; Abstract P20.
In conclusion, BH3ÁTHF-TMSOTf is an effective and practical
reagent which cleaves benzylidene, p-methoxybenzylidene, and
naphthylmethylene acetals regioselectively under mild condi-
tions to the corresponding 4-O-ethers in excellent yield. Further-
more the regioselectivity was not influenced by the type of ring
annelation. The conversions are highly chemo- and regioselective
and afford the corresponding ethers in excellent yields. This
method should have utility in the preparation of complex
carbohydrates.
15. (a) Johnsson, R.; Olsson, D.; Ellervik, U. J. Org. Chem. 2008, 73, 5226–5232; (b)
Johnsson, R.; Cukalevski, R.; Dragén, F.; Ivanisevic, D.; Johansson, I.; Petersson,
L.; Wettergren, E.; Yam, K. B.; Yang, B.; Ellervik, U. Carbohydr. Res. 2008, 343,
2997–3000.
16. TMSOTf is less expensive than the metal triflates9d,9e and organoboron
compounds9a–c used in combination with BH3ÁTHF recently. In contrast to
methods using Ph2BBr,9a Bu2BOTf9b,c, and CoCl29f where an excess of the Lewis
acid is required, the ring opening proceeds readily using only a catalytic
amount of TMSOTf. An additional advantage is the relative safe handling of
TMSOTf compared to the highly pyrophoric Bu2BOTf.9b,c
17. Typical experimental procedure: To a solution of the acetal (1 mmol) in dry
CH2Cl2 (10 mL) a 1 M solution of borane in THF (5 mL, 5 equiv) and TMSOTf
(0.027 mL, 0.15 equiv) were added and the mixture was stirred under argon at
room temperature. When TLC indicated the complete disappearance of the
starting material (1–4 h), Et3N (1 mL) was added, followed by careful addition
of MeOH until the evolution of H2 ceased. The mixture was concentrated, and
the residue was coevaporated with MeOH (3 Â 30 mL). Purification of the
residue by silica gel column chromatography afforded the 4-O-benzyl ethers.
Reactions on a larger scale (up to 0.05 mol) were also performed by reducing
the excess of borane to 2 equiv giving the same results. All new compounds
were analyzed and characterized by 1H-, 13C- NMR, and MS-spectroscopies.
18. (a) Lipták, A.; Fügedi, P.; Nánási, P. Carbohydr. Res. 1976, 51, C19–C21; (b)
Lipták, A.; Fügedi, P.; Nánási, P. Carbohydr. Res. 1978, 65, 209–217.
Acknowledgment
The skillful technical assistance of Ms. Katalin T. Palcsu is grate-
fully acknowledged.
Supplementary data
Supplementary data (characterization data of all new
compounds) associated with this article can be found, in the online