ORGANIC
LETTERS
2009
Vol. 11, No. 13
2892-2895
Asymmetric Synthesis of Unsaturated
Monocyclic and Bicyclic Nitrogen
Heterocycles
Hiroshi Nomura and Christopher J. Richards*
School of Chemical Sciences and Pharmacy, UniVersity of East Anglia,
Norwich, NR4 7TJ, U.K.
Received April 22, 2009
ABSTRACT
Hydrolysis of scalemic trichloroacetamides Cl3CCONHCH(R)CHCH2 and allylation, or acylation with but-3-enoic acid, followed by ring-closing
metathesis resulted in the formation of unsaturated pyrrolidine and piperidine building blocks. These were employed in the synthesis of
(S)-coniine (R ) Pr) and a formal synthesis of (+)-anisomycin (R ) p-MeOC6H4). Extension of this methodology with R ) CH2CHCH2 employing
two ring-closing metatheses resulted in the synthesis of unsaturated quinolizidinone and indolizidinone frameworks.
The advent of active and accessible ruthenium-based ring-
closing metathesis (RCM) catalysts has transformed the
synthesis of cyclic organic compounds.1 Not least among
the categories of compounds synthesized in this way are
alkaloids, especially examples where RCM is employed as
a key step in the synthesis of pyrrolidines, piperidine, and
other nitrogen heterocycles.2 Although desymmetrizing RCM
reactions are now well established for the synthesis of
nonracemic compounds,3 the asymmetric syntheses of chiral
five- and six-membered-ring alkaloids generally employ
scalemic amino dienes derived from a variety of chiral pool
and asymmetric catalysis sources.4 Within the latter category,
transition-metal-catalyzed allylic amination reactions have
been extensively investigated.5 An alternative and highly
enantioselective method for the synthesis of chiral allylic
amines is the allylic imidate (or Overman) rearrangement
(4) (a) Liu, S.; Fan, Y.; Peng, X.; Wang, W.; Hua, W.; Akber, H.; Liao,
L. Tetrahedron Lett. 2006, 47, 7681–7684. (b) Angle, S. R.; Bensa, D.;
Belanger, D. S. J. Org. Chem. 2007, 72, 5592–5597. (c) Lebrun, S.; Couture,
A.; Deniau, E.; Grandclaudon, P. Org. Lett. 2007, 9, 2473–2476. (d) Pearson,
M. S. M.; Evain, M.; Mathe´-Allainmat, M.; Lebreton, J. Eur. J. Org. Chem.
2007, 4888–4894. (e) Murruzzu, C.; Riera, A. Tetrahedron: Asymmetry
2007, 18, 149–154.
(5) (a) Welter, C.; Moreno, R. M.; Streiff, S.; Helmchen, G. Org. Biomol.
Chem. 2005, 3266–3268. (b) Helmchen, G.; Dahnz, A.; Du¨bon, P.;
Schelwies, M.; Weihofen, R. Chem. Commun. 2007, 675–691. (c) Singh,
O. V.; Han, H. J. Am. Chem. Soc. 2007, 129, 774–775.
(1) (a) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995,
28, 446–452. (b) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–
4450.
(2) (a) Felpin, F.-X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693–3712.
(b) Brenneman, J. B.; Martin, S. F. Curr. Org. Chem. 2005, 9, 1535–1549.
(c) Compain, P. AdV. Synth. Catal. 2007, 349, 1829–1846.
(3) For application to the asymmetric synthesis of nitrogen heterocycles,
see: (a) Dolman, S. J.; Sattely, E. S.; Hoveyda, A. H.; Schrock, R. R. J. Am.
Chem. Soc. 2002, 124, 6991–6997. (b) Dolman, S. J.; Schrock, R. R.;
Hoveyda, A. H. Org. Lett. 2003, 5, 4899–4902.
(6) Overman, L. E.; Owen, C. E.; Pavan, M. M.; Richards, C. J. Org.
Lett. 2003, 5, 1809–1812.
(7) (a) Anderson, C. E.; Overman, L. E. J. Am. Chem. Soc. 2003, 125,
12412–12413. (b) Kirsch, S. F.; Overman, L. E.; Watson, M. P. J. Org.
Chem. 2004, 69, 8101–8104. (c) Watson, M. P.; Overman, L. E.; Bergman,
R. G. J. Am. Chem. Soc. 2007, 129, 5031–5044. (d) Nomura, H.; Richards,
C. J. Chem.–Eur. J. 2007, 13, 10216–10224.
10.1021/ol900880w CCC: $40.75
Published on Web 05/29/2009
2009 American Chemical Society