also promote stoichiometrically, and very recently, catalytically8
in the case of platinum, the polyenes’ cyclization. From the
organometallic perspective, we postulated that the replacement
of the terminal alkene moiety by an alkyne function would
release a highly reactive vinyl-metal intermediate prone to
protodemetalation.9 Whereas several reports have been devoted
to the late transition carbophilic Lewis acid catalyzed cycloi-
somerization of 1,6-enynes,9,10 few reports deal with 1,5-
enynes.11,12 The Kozmin group reported the formation of
bicyclic ethers upon cycloisomerization of 1,5-enynes pos-
sessing an internal hydroxyle or amine function (Scheme
1).11c They reported a strong influence of the stereochemistry
chemists in line with the discovery of promising biological
properties.16 In this paper, we describe a highly efficient gold-
catalyzed 6-endo-dig intramolecular phenoxycyclization of
1,5-enynes and 1,5,9-dienynes.
As a model reaction, we prepared 1,5-enyne 1a (see the
Supporting Information) and attempted its cyclization in the
presence of various Bronsted or Lewis acid catalysts (Table
1). The use of hydrochloric acid as the electrophilic alkyne
Table 1. [M]-Catalyzed Cycloisomerization of 1,5-Enyne 1a
Scheme 1. Au-Catalyzed Cycloisomerization of 1,5-Enynes
entry
catalyst (%)
conditions
yielda (%)
1
2
HCl (50)
toluene/diethyl ether (4/1)
PdCl2 (5)
toluene, 80 °C, 16 h
PdCl2 (5), PPh3 (10),
AgSbF6 (12.5)
PtCl2 (5)
3
4
5
6
7
8
9
dioxane, 60 °C, 16 h
toluene, 80 °C, 16 h
b
PPh3AuCl (1), AgSbF6 (1) diethyl ether, 20 °C, 16 h
78
95
95
95
30c
PPh3AuNTf2 (1)
PPh3AuNTf2 (1)
PPh3AuNTf2 (1)
AuCl3 (10)
diethyl ether, 20 °C, 1 h
toluene, rt, 1 h
CH2Cl2, rt, 1 h
CH3CN, rt
of the alkene on the regioselectivity of the cyclization event:
whereas Z alkenes lead to the obtention of products resulting
from a 6-endo cyclization, E alkenes produces bicyclic
5-endo compounds. As part of our ongoing program devoted
to the development of atom-economical metal-catalyzed
cycloisomerization reactions13 and considering the biological
and medicinal importance of the hexahydroxanthene core,14
we engaged in the application of the tandem nucleophilic
addition/cycloisomerization reaction to the synthesis involv-
ing 1,5-enynes and oxygen nucleophiles. The tricyclic
arrangement is indeed present in a family of hydroquinone-
containing sesquiterpenes containing more than a hundred
isolated natural products of marine origin.15 These natural
products along with synthetic analogues featuring the same
structural architecture have attracted attention from synthetic
a Isolated yield. b Presence of 2a and 3a detected. c 35% conversion.
activator did not lead to any conversion of the starting material
(Table 1, entry 1). Palladium-based systems, in the presence or
the absence of silver salts (Table 1, entries 2 and 3), did not
engender any reactivity neither. The use of PtCl2 led to the
formation of a complex mixture of products including tetrahy-
droxanthene 2a corresponding to the hydroxycyclization product
and the chromane 3a, resulting from the hydroalkoxylation of
the alkene double bond.17 (Table 1, entry 4). In the presence
of cationic Au(I) complexes,18 the clean formation of the
bicyclic ether 2a in 78% yield was this time observed under
very mild conditions (Table 1, entry 5). The use of 1 mol %
(7) For an Hg study, see: (a) Nishizawa, M.; Takenaka, H.; Hayashi,
Y. J. Org. Chem. 1986, 51, 806. For Pt studies, see: (b) Koh, J. H.; Gagne´,
M. R. Angew. Chem., Int. Ed. 2004, 43, 3459. (c) Feducia, J. A.; Gagne´,
M. R. J. Am. Chem. Soc. 2008, 130, 592.
(8) Mullen, C. A.; Gagne´, M. R. J. Am. Chem. Soc. 2007, 129, 11880.
(9) (a) Chianese, A. R.; Lee, S. J.; Gagne´, M. R. Angew. Chem., Int.
Ed. 2007, 46, 4042. (b) Fu¨rstner, A.; Davies, P. W. Angew. Chem., Int. Ed.
2007, 46, 3410. (c) Nevado, C.; Echavarren, A. M. Synthesis 2005, 167.
(10) For selected reviews on metal-catalyzed cycloisomerizations, see:
(a) Trost, B. M.; Krische, M. J. Synlett 1998, 1. (b) Buisine, O.; Aubert,
C.; Malacria, M. Chem. ReV. 2002, 102, 813. (c) Lloyd-Jones, G. C. Org.
Biomol. Chem. 2003, 1, 215. (d) Fairlamb, I. J. S. Angew. Chem., Int. Ed.
2004, 43, 1048. (e) Zhang, L.; Sun, J.; Kozmin, S. A. AdV. Synth. Catal.
2006, 348, 2271. (f) Reference 9. (g) Michelet, V.; Toullec, P. Y.; Genet,
J.-P. Angew. Chem., Int. Ed. 2008, 47, 4268. (h) Gimenez-Nunez, E.;
(13) (a) Chao, C.-M.; Vitale, M.; Toullec, P. Y.; Geneˆt, J.-P.; Michelet,
V. Chem.sEur. J. 2009, 15, 1319. (b) Leseurre, L.; Chao, C.-M.; Seki, T.;
Genin, E.; Toullec, P. Y.; Geneˆt, J.-P.; Michelet, V. Tetrahedron 2009, 65,
1911. (c) Chao, C.-M.; Genin, E.; Toullec, P. Y.; Geneˆt, J.-P.; Michelet,
V. J. Organomet. Chem. 2009, 694, 538. (d) Toullec, P. Y.; Chao, C.-M.;
Chen, Q.; Geneˆt, J.-P.; Michelet, V. AdV. Synth. Catal. 2008, 250, 2401.
(e) Neatu, F.; Li, Z.; Richards, R.; Toullec, P. Y.; Geneˆt, J.-P.; Dumbuya,
K.; Gottfried, J. M.; Steinru¨ck, H.-P.; Paˆrvulescu, V. I.; Michelet, V.
Chem.sEur. J. 2008, 14, 9412. (f) Toullec, P. Y.; Genin, E.; Antoniotti,
S.; Geneˆt, J.-P.; Michelet, V. Synlett 2008, 707. (g) Leseurre, L.; Toullec,
P. Y.; Geneˆt, J.-P.; Michelet, V. Org. Lett. 2007, 9, 4049. (h) Genin, E.;
Leseurre, L.; Toullec, P. Y.; Genet, J.-P.; Michelet, V. Synlett 2007, 1780.
(i) Genin, E.; Toullec, P. Y.; Marie, P.; Antoniotti, S.; Brancour, C.; Geneˆt,
J.-P.; Michelet, V. ARKIVOC 2007, V, 67. (j) Toullec, P. Y.; Genin, E.;
Leseurre, L.; Geneˆt, J.-P.; Michelet, V. Angew. Chem., Int. Ed. 2006, 45,
7427. (k) Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour, C.; Geneˆt,
J.-P.; Michelet, V. J. Am. Chem. Soc. 2006, 128, 3112. (l) Genin, E.;
Antoniotti, S.; Michelet, V.; Geneˆt, J.-P. Angew. Chem., Int. Ed. 2005, 44,
4949. (m) Antoniotti, S.; Genin, E.; Michelet, V.; Geneˆt, J.-P. J. Am. Chem.
Soc. 2005, 127, 9976. (n) Charruault, L.; Michelet, V.; Taras, R.; Gladiali,
S.; Geneˆt, J.-P. Chem. Commun. 2004, 850. (o) Nevado, C.; Charruault,
L.; Michelet, V.; Nieto-Oberhuber, C.; Mun˜oz, M. P.; Me´ndez, M.; Rager,
M.-N.; Geneˆt, J.-P.; Echavarren, A. M. Eur. J. Org. Chem. 2003, 706.
Echavarren, A. M. Chem. ReV. 2008, 108, 3326
.
(11) For Hg-catalyzed carbocyclization (three examples), see: (a)
Imagawa, H.; Iyenaga, T.; Nishizawa, M. Synlett 2005, 703. (b) Imagawa,
H.; Iyenaga, T.; Nishizawa, M. Org. Lett. 2005, 7, 451. For Au-catalyzed
alkoxy and aminocyclization, see: (c) Zhang, L.; Kozmin, S. A. J. Am.
Chem. Soc. 2005, 127, 6962. (d) Buzas, A. K.; Istrate, F. M.; Gagosz, F.
Angew. Chem., Int. Ed. 2007, 46, 1141. (e) Bo¨hringer, S.; Gagosz, F. AdV.
Synth. Catal. 2008, 350, 2617
.
(12) During the preparation of this manuscript, the Gagne´ group reported
the platinum-catalyzed phenoxycyclization of 1,5-enynes using 20 mol %
of a dicationic pincer-ligated platinum complex (two examples); see: Nelsen,
D. L.; Gagne´, M. R. Organometallics 2009, 28, 950
.
Org. Lett., Vol. 11, No. 13, 2009
2889