2714
J. P. Lamb et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2711–2714
F
F
studies with these ligands, as well as their metabolites, are in pro-
gress and will be reported in due course.
N
N
N
N
O
O
N
N
O
O
Acknowledgements
(S)-23a
(R)-23a
The authors thank NIDA (DA023947-01) for support of our pro-
grams in developing mGlu5 NAMs and partial antagonists for the
treatment of addiction. The authors would like to thank Nathan
Kett, Chris Denicola and Sichen Chang for the purification of com-
pounds utilizing the mass-directed HPLC system.
mGlu5 EC50 7,000 nM
57.3% Glu Max
mGlu5 EC50 = 530 nM
68.4% Glu Max
Figure 2. Resolved enantiomers of 23a. All the mGlu5 PAM activity resides in the
(R)-enantiomers, (R)-23a.
References and notes
At this point, we elected to examine the impact of contracting
the piperidine ring to a pyrrolidine ring while maintaining the
original cyclobutyl amide and surveying a diverse group of sub-
stituents on the oxadiazole ring. This initial library employed
racemic proline to afford racemic analogs 23, following a varia-
tion of Scheme 2. As shown in Table 4, this modification afforded
1. (a) Schoepp, D. D.; Jane, D. E.; Monn, J. A. Neuropharmacology 1999, 38, 1431–
1476; (b) Conn, P. J.; Pin, J.-P. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 205–237.
2. (a) Lea, P. M. I. V.; Faden, A. I. CNS Drug Rev. 2006, 12, 149–166; (b) Kew, J. N. C.
Pharmacol. Ther. 2004, 104, 233–244.
3. Lindsley, C. W.; Emmitte, K. A. Curr. Opin. Drug Disc. Dev. 2009, 12, 446–457.
4. Conn, P. J.; Lindsley, C. W.; Jones, C. Trends Pharm. Sci. 2009, 30, 25–31.
5. Conn, P. J.; Christopolous, A.; Lindsley, C. W. Nat. Rev. Drug Disc. 2009, 8, 41–54.
6. Lindsley, C. W.; Wisnoski, D. D.; Leister, W. H.; O’Brien, J. A.; Lemiare, W.;
Williams, D. L., Jr.; Burno, M.; Sur, C.; Kinney, G. G.; Pettibone, D. J.; Tiller, P. R.;
Smith, S.; Duggan, M. E.; Hartman, G. D.; Conn, P. J.; Huff, J. R. J. Med. Chem.
2004, 47, 5825–5828.
7. Hammond, A. S.; Rodriguez, A. L.; Niswender, C. M.; Lindsley, C. W.; Conn, P. J.
ACS Chem. Neuro. 2010, 1, 702–716.
8. Zhao, Z.; Wisnoski, D. D.; O’Brien, J. A.; Lemiare, W.; Williams, D. L., Jr.;
Jacobson, M. A.; Wittman, M.; Ha, S.; Schaffhauser, H.; Sur, C.; Pettibone, D. J.;
Duggan, M. E.; Conn, P. J.; Hartman, G. D.; Lindsley, C. W. Bioorg. Med. Chem.
Lett. 2007, 17, 1386–1391.
9. Felts, A. S.; Lindsley, S. R.; Lamb, J. P.; Rodriguez, A. L.; Menon, U. N.; Jadhav, S.;
Conn, P. J.; Lindsley, C. W.; Emmitte, K. A. Bioorg. Med. Chem. Lett. 2010, 20,
4390–4394.
10. Gasparini, F.; Lingenhohl, K.; Stoehr, N.; Flor, P. J.; Heinrich, M.; Vranesic, I.;
Biollaz, M.; Allgeier, H.; Heckendorn, R.; Urwyler, S.; Varney, M. A.; Johnson, E.
C.; Hess, S. D.; Rao, S. P.; Sacaan, A. I.; Santori, E. M.; Veliocelebi, G.; Kuhn, R.
Neuropharmacology 1999, 38, 1493–1503.
inactive compounds, weak NAMs (IC50s ꢀ10
lM) and two low
micromolar PAMs (23a and 23b). Based on these data, we made
a second generation library holding constant the 3-fluorobenzene
moiety of 23a, and surveyed a diverse collection of amide moie-
ties to replace the cyclobutyl group. As shown in Table 5, this
effort afforded predominantly pure PAMs 24 with a range of
potencies and efficacies. To address the role of stereochemical
preference, we separated racemic 23a into pure enantiomers
(S)-23a and (R)-23a by chiral SFC. In this case, (R)-23a is a potent
mGlu5 PAM (EC50 = 530 nM) while (S)-23a is a very weak PAM
(EC50 = 7000 nM) (Fig. 2). Note, this is the opposite stereochemical
preference observed within the 3-piperidinyl-based mGlu5 PAMs
5–7.15
11. Sharma, S.; Rodriguez, A. L.; Conn, P. J.; Lindsley, C. W. Bioorg. Med. Chem. Lett.
2008, 18, 4098–5101.
In summary, an iterative parallel synthesis optimization ap-
proach for our weak mGlu5 NAM 8, identified multiple regioiso-
meric and stereochemical ‘molecular switches’ that modulated
modes (NAM, partial antagonist, PAM, ago-PAM) of mGlu5 pharma-
12. Sharma, S.; Kedrowski, J.; Rook, J. M.; Smith, J. M.; Jones, C. K.; Rodriguez, A. L.;
Conn, P. J.; Lindsley, C. W. J. Med. Chem. 2009, 52, 4103–4106.
13. Rodriguez, A. L.; Williams, R.; Zhou, S.; Lindsley, S. R.; Le, U.; Conn, P. J.;
Lindsley, C. W. Bioorg. Med. Chem. Lett. 2009, 19, 3209–3212.
14. Zhou, Y.; Rodriguez, A. L.; Williams, R.; Weaver, C. D.; Conn, P. J.; Lindsley, C. W.
Bioorg. Med. Chem.Lett. 2009, 19, 6502–6506.
15. Engers, D. W.; Rodriguez, A. L.; Oluwatola, O.; Hammond, A. S.; Venable, D. F.;
Williams, R.; Sulikowski, G. A.; Conn, P. J.; Lindsley, C. W. ChemMedChem 2009,
4, 505–511.
cology. From 8 (IC50 = 8.7 lM), potent PAMs (EC50 = 78–200 nM)
and NAMs (IC50 = 77–400 nM), were developed. In many cases,
the perturbations in structure were subtle which led to opposing
modes of pharmacology and suggests subtle conformational
changes within the GPCR either facilitate or prohibit coupling to
the G-protein. These data, coupled with our earlier work in a struc-
turally distinct MPEP-site scaffold 2, suggests that metabolites of
MPEP-site allosteric ligands must be characterized, as metabolites
may engender opposing modes of mGlu5 modulation. Additional
16. Wágner, G.; Wéber, C.; Nyéki, O.; Nógrádi, K.; Bielik, A.; Molnár, L.; Bobok, A.;
Horváth, A.; Kiss, B.; Kolok, S.; Nagy, J.; Kurkó, D.; Gál, K.; Greiner, I.;
}
Szombathelyi, Z.; Keseru, G. M.; Dómany, G. Bioorg. Med. Chem. Lett. 2010, 20,
3737–3741.
17. Rodriguez, A. L.; Nong, Y.; Sekaran, N. K.; Alagille, D.; Tamagnan, G. D.; Conn, P.
J. Mol. Pharmacol. 2005, 68, 1793–1802.