3408 Organometallics, Vol. 28, No. 12, 2009
Samant et al.
Chart 1
A recent development in the above carbonyl-insertion processes
has been the interest in the cooperative involvement of adjacent
metals in both homobinuclear20,21 and heterobinuclear5,22-29
systems. In such systems it is clearly of interest to determine
the roles of the adjacent metals in the different steps leading to
product formation, and in the case of the mixed-metal systems,
it is of additional interest to determine at which metal each step
occurs. In one particularly interesting study, Komiya and co-
workers reported the enhancement of migratory insertion at Pd
by an adjacent Co center, and on the basis of DFT calculations
a mechanism was proposed in which the roles of the different
metals were outlined.29
agostic interaction with the other. For late transition metal
complexes the unsymmetric mode B is by far the more common,
with only a few examples reported of species of type A.41-45
In this paper we extend our previous studies on the Rh/Ru30
and Rh/Os31,32 systems to include the Ir/Ru metal combination.
We are attempting to obtain a more complete understanding of
the roles of different metals in organometallic transformations
through studies involving a range of metal combinations, in
order to compare the effects of changing from one metal to
another.
In addition to complementing our previous work, the Ir/Ru
system is particularly relevant to migratory insertion in methanol
carbonylation since the CATIVA process53 utilizes a mixed Ir/
Ru catalyst system. Although mechanistic studies have estab-
lished that the role of Ru in this system is limited to iodide
abstraction from Ir, at which all fundamental steps in the process
(oxidative addition, migratory insertion, and reductive elimina-
tion) appear to occur,9 the possibility that adjacent Ir and Ru
centers could play greater roles in this and related processes is
intriguing.
In related studies, involving the Rh/Ru30 and Rh/Os31,32
combinations of metals, we have investigated the roles of the
different metals in the individual steps leading from bridging
methylene groups to bridging acyl groups, using low-temper-
ature multinuclear NMR techniques to study intermediates in
the transformation. One of the key steps in this conversion is
the formation of a bridging methyl ligand by protonation
of the bridging methylene group (see Chart 1). The two most
common binding modes for bridging methyl groups are the
symmetrically bridged geometry (A),33-45 containing a three-
centered M-C-M interaction, and the unsymmetrically bridged
geometry (B),30-32,46-52 in which the methyl group is σ-bound
to one metal while engaging in a three-centered M-H-C
(9) Haynes, A.; Maitlis, P. M.; Morris, G. E.; Sunley, G. J.; Adams, H.;
Badger, P. W.; Bowers, C. M.; Cook, D. B.; Elliott, P. I. P.; Ghaffar, T.;
Green, H.; Griffin, T. R.; Payne, M.; Pearson, J. M.; Taylor, M. J.; Vickers,
P. W.; Watt, R. J. J. Am. Chem. Soc. 2004, 126 (9), 2847.
(10) Selected reviews:(a) Sen, A. Acc. Chem. Res. 1993, 26, 303. (b)
Drent, E.; Budzelaar, P. H. M. Chem. ReV. 1996, 96, 663. (c) Robertson,
R. A. M.; Cole-Hamilton, D. J. C. Coord. Chem. ReV. 2002, 225, 67. (d)
Bianchini, C.; Meli, A.; Oberhauser, W. Dalton Trans. 2003, 2627.
(11) Recent papers:(a) Cavinato, G.; Vavasori, A.; Anadio, E.; Toniolo,
L. J. Mol. Catal. A 2007, 278, 251. (b) Rampersad, M. V.; Zuidema, E.;
Ernsting, J. M.; van Leeuwen, P. W. N. M.; Darensbourg, M. Y.
Organometallics 2007, 26, 783. (c) Mun˜oz-Moreno, B. K.; Claver, C.; Ruiz,
A.; Bianchini, C.; Meli, A.; Oberhauser, W. Dalton Trans 2008, 2741.
(12) Watson, P. R.; Somorjai, G. A. J. Catal. 1981, 72, 347.
(13) Fukushima, T.; Arakawa, H.; Ichikawa, M. J. Phys. Chem. 1985,
89, 4440.
(14) Fukushima, T.; Arakawa, H.; Ichikawa, M. J. Chem. Soc., Chem.
Commun. 1985, 729.
(15) Ichikawa, M. Polyhedron 1988, 7, 2351.
(16) Shulz, H. Appl. Catal. A: Gen. 1999, 186, 3.
(17) Overett, M. J.; Hill, R. O.; Moss, J. R. Coord. Chem. ReV. 2000,
206-207, 581.
(18) Wang, X.; Weitz, E. J. Organomet. Chem. 2004, 689, 2354.
(19) George, R.; Andersen, J. M.; Moss, J. R. J. Organomet. Chem.
1995, 505, 131.
(33) Byram, S. K.; Fawcett, J. K.; Nyburg, S. C.; O’Brien, R. J. J. Chem.
Soc. D 1970, 16.
(34) Evans, W. J.; Anwander, R.; Ziller, J. W. Organometallics 1995,
14 (3), 1107.
(35) Holton, J.; Lappert, M. F.; Scollary, G. R.; Ballard, D. G. H.; Pearce,
R.; Atwood, J. L.; Hunter, W. E. J. Chem. Soc., Chem. Commun. 1976,
425.
(36) Holton, J.; Lappert, M. F.; Ballard, D. G. H.; Pearce, R.; Atwood,
J. L.; Hunter, W. E. J. Chem. Soc., Dalton Trans. 1979, 54.
(37) Huffman, J. C.; Streib, W. E. J. Chem. Soc. D 1971, 911.
(38) Klooster, W. T.; Lu, R. S.; Anwander, R.; Evans, W. J.; Koetzle,
T. F.; Bau, R. Angew. Chem., Int. Ed. Engl. 1998, 37 (9), 1268.
(39) Waezsada, S. D.; Liu, F.-Q.; Murphy, E. F.; Roesky, H. W.;
Teichert, M.; Uso´n, I.; Schmidt, H.-G.; Albers, T.; Parisini, E.; Noltemeyer,
M. Organometallics 1997, 16, 1260.
(40) Yu, Z.; Wittbrodt, J. M.; Heeg, M. J.; Schlegel, H. B.; Winter,
C. H. J. Am. Chem. Soc. 2000, 122 (38), 9338.
(41) Beringhelli, T.; D’Alfonso, G.; Panigati, M.; Porta, F.; Mercandelli,
P.; Moret, M.; Sironi, A. J. Am. Chem. Soc. 1999, 121, 2307.
(42) Kruger, C.; Sekutowski, J. C.; Berke, H.; Hoffmann, R. Z.
Naturforsch. 1978, 33, 1110.
(43) Kulzick, M. A.; Price, R. T.; Andersen, R. A.; Muetterties, E. L. J.
Organomet. Chem. 1987, 333, 105.
(44) Reinking, M. K.; Fanwick, P. E.; Kubiak, C. P. Angew. Chem.,
Int. Ed. Engl. 1989, 28, 1377.
(20) Matthews, R. C.; Howell, D. K.; Peng, W.-J.; Train, S. G.;
Treheaver, W. D.; Stanley, G. G. Angew. Chem., Int. Ed. Engl. 1996, 35,
2253.
(21) Broussard, M. E.; Juma, B.; Train, S. G.; Peng, W.-J.; Laneman,
S. A.; Stanley, G. G. Science 1993, 260, 1784.
(22) Hidai, M.; Fukuska, A.; Koyasu, Y.; Uchida, Y. J. Mol. Catal. 1986,
35, 29.
(45) Schmidt, G. F.; Muetterties, E. L.; Beno, M. A.; Williams, J. M.
Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 1318.
(46) Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, (250),
395.
(23) Hidai, M.; Orisaku, M.; Ue, M.; Koyasu, Y.; Komada, T.; Uchida,
Y. Organometallics 1983, 2, 292.
(24) Fukuska, A.; Fukugawa, S.; Hirano, M.; Komiya, S. Chem. Lett.
1997, 377.
(25) Ishii, Y.; Hidai, M. Catal. Today 2001, 66, 53.
(26) Van den Beuken, E. K.; Feringa, B. L. Tetrahedron 1998, 54, 12985.
(27) Komiya, S.; Yasuda, T.; Hirano, A.; Fukuoka, M. J. Mol. Catal.
A: Chem. 2000, 159, 63.
(28) Ishii, Y.; Miyashita, K.; Kamita, K.; Hidai, M. J. Am. Chem. Soc.
1997, 199, 6448.
(29) Fukuoka, A.; Fukugawa, S.; Hirano, M.; Koga, N.; Komiya, S.
Organometallics 2001, 20, 2065.
(30) Rowsell, B. D.; McDonald, R.; Cowie, M. Organometallics 2004,
23 (16), 3873.
(31) Trepanier, S. J.; McDonald, R.; Cowie, M. Organometallics 2003,
22 (13), 2638.
(32) Wigginton, J. R.; Trepanier, S. J.; McDonald, R.; Ferguson, M. J.;
Cowie, M. Organometallics 2005, 24, 6194.
(47) (a) Brookhart, M.; Green, M. L. H.; Wong, L.-L. Prog. Inorg. Chem.
1988, 36, 1. (b) Brookhart, M.; Green, M. L. H.; Parkin, G. Proc. Natl.
Acad. Sci. U.S.A. 2007, 104, 6908.
(48) Calvert, R. B.; Shapley, J. R. J. Am. Chem. Soc. 1978, 100 (24),
7726.
(49) Casey, C. P.; Fagan, P. J.; Miles, W. H. J. Am. Chem. Soc. 1982,
104 (4), 1134.
(50) Dawkins, G. M.; Green, M.; Orpen, A. G.; Stone, F. G. A. J. Chem.
Soc., Chem. Commun. 1982, 41.
(51) Hursthouse, M. B.; Jones, R. A.; Abdul Malik, K. M.; Wilkinson,
G. J. Am. Chem. Soc. 1979, 101 (15), 4128.
(52) Jones, R. A.; Wilkinson, G.; Galas, A. M. R.; Hursthouse, M. B.;
Malik, K. M. A. J. Chem. Soc., Dalton Trans. 1980, 1771.
(53) (a) Chem. Br. 1996, 32, (10) 7. (b) Howard, M. J.; Sunley, G. J.;
Poole, A. D.; Watt, R. J.; Sharma, B. K. Stud. Surf. Sci. Catal. 1999, 121,
61. (c) Sunley, G. J.; Watson, D. J. Catal. Today 2000, 58, 293. (d) Jones,
J. H. Platinum Met. ReV. 2000, 44, 94. (e) Haynes, A. Educ. Chem. 2001,
38, 99.