Organometallics 2009, 28, 4249–4251 4249
DOI: 10.1021/om900483t
From Pyrone to Thiopyrone Ligands-Rendering Maltol-Derived
Ruthenium(II)-Arene Complexes That Are Anticancer Active in Vitro
Wolfgang Kandioller,† Christian G. Hartinger,*,† Alexey A. Nazarov,*,†,‡
Maxim L. Kuznetsov,§ Roland O. John,† Caroline Bartel,† Michael A. Jakupec,†
Vladimir B. Arion,† and Bernhard K. Keppler†
†University of Vienna, Institute of Inorganic Chemistry, Waehringer Str. 42, A-1090 Vienna, Austria,
‡
ꢀ
ꢀ ꢀ
Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015
ꢀ
§
Lausanne, Switzerland, and Centro de Quımica Estrutural, Complexo I, Instituto Superior Tecnico,
´
Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
Received June 8, 2009
Summary: Ru(II)-arene complexes with pyrone-derived li-
gands are rendered active against cancer cells by replacement
of the coordinated O,O donor with an S,O donor. The different
stabilities of these systems may explain the observed influence
of the donor atoms on the anticancer activity in vitro.
Scheme 1. Synthesis of the Complexes 2a-d
Metal complexes are playing an important role in the
treatment of cancer, and many promising compounds have
been developed in recent years.1-4 Ruthenium complexes have
been shown to be among the most promising candidates for
new metal-based anticancer drugs. Two of them, KP1019 and
NAMI-A, are currently undergoing clinical trials.2,5 Their low
general toxicity might be explained by their modes of action,
including protein binding and activation by reduction.5-7
More recently, bioorganometallic chemistry has emerged
as a new source of anticancer metallodrugs, with titanocene
dichloride being the prototype agent of this compound
class.4,8,9 Furthermore, organometallic Ru(II) compounds
that are stabilized in their þ2 oxidation state by coordination
of an arene ligand have been investigated for their anticancer
properties. These piano-stool complexes have been pio-
neered by the Dyson and Sadler groups,10,11 who developed
compounds with pta (1,3,5-triaza-7-phoshatricyclo[3.3.1.1]-
decane) and en (ethylenediamine) ligands, respectively.10 For
the [(η6-arene)RuII(X)(Y)] complexes, DNA base selectivity
strongly depends on the character of the chelating ligand Y-
exchange of the neutral ethylenediamine by anionic acetyla-
cetonate shifts the affinity from guanine to adenine.12 In
addition to en and pta complexes, maltol-derived mono- and
polynuclear ruthenium and osmium complexes have been
developed.13-15 The linking of two pyridone moieties
opened up new possibilities for tuning the in vitro anticancer
activity and lipophilicity, and compounds with interduplex
cross-linking capacity were obtained.14,16-18 In the case of
the mononuclear Ru(II) complexes, an increase in cytotoxic
activity was achieved by derivatization of the pyrone ring
with lipophilic aromatic substituents.13
In order to study the Ru-ligand interaction and its effect on
the in vitro anticancer activity, Ru(II)-cymene complexes
(Scheme 1) with pyrones and their corresponding, more
lipophilic thiopyrones as chelating agents were prepared.15,19
Such (thio)pyrone systems have already found application in
*To whom correspondence should be addressed. E-mail:
christian.hartinger@univie.ac.at (C.G.H.); alex.nazarov@univie.ac.at
(A.A.N.).
(1) Guo, Z.; Sadler, P. J. Adv. Inorg. Chem. 2000, 49, 183–306.
(2) Alessio, E.; Mestroni, G.; Bergamo, A.; Sava, G. Curr. Top. Med.
Chem. 2004, 4, 1525–35.
(3) Jakupec, M. A.; Galanski, M.; Arion, V. B.; Hartinger, C. G.;
Keppler, B. K. Dalton Trans. 2008, 183–194.
(4) Strohfeldt, K.; Tacke, M. Chem. Soc. Rev. 2008, 37, 1174–1187.
(5) Hartinger, C. G.; Zorbas-Seifried, S.; Jakupec, M. A.; Kynast, B.;
Zorbas, H.; Keppler, B. K. J. Inorg. Biochem. 2006, 100, 891–904.
(6) Groessl, M.; Reisner, E.; Hartinger, C. G.; Eichinger, R.; Semenova,
O.; Timerbaev, A. R.; Jakupec, M. A.; Arion, V. B.; Keppler, B. K. J. Med.
Chem. 2007, 50, 2185–2193.
(7) Dyson, P. J.; Sava, G. Dalton Trans. 2006, 1929–1933.
(8) Hartinger, C. G.; Dyson, P. J. Chem. Soc. Rev. 2009, 38, 391–401.
(9) Jaouen, G., Bioorganometallics; Wiley-VCH: Weinheim, Germany,
2006; p 444.
(13) Peacock, A. F. A.; Melchart, M.; Deeth, R. J.; Habtemariam, A.;
Parsons, S.; Sadler, P. J. Chem. Eur. J. 2007, 13, 2601–2613.
(14) Mendoza-Ferri, M. G.; Hartinger, C. G.; Eichinger, R. E.;
Stolyarova, N.; Jakupec, M. A.; Nazarov, A. A.; Severin, K.; Keppler,
B. K. Organometallics 2008, 27, 2405–2407.
(15) Kandioller, W.; Hartinger, C. G.; Nazarov, A. A.; Kasser, J.;
John, R.; Jakupec, M. A.; Arion, V. B.; Dyson, P. J.; Keppler, B. K.
J. Organomet. Chem. 2009, 694, 922–929.
(16) Mendoza-Ferri, M. G.; Hartinger, C. G.; Nazarov, A. A.;
Kandioller, W.; Severin, K.; Keppler, B. K. Appl. Organomet. Chem.
2008, 22, 326–332.
(17) Mendoza-Ferri, M. G.; Hartinger, C. G.; Mendoza, M. A.;
Groessl, M.; Egger, A.; Eichinger, R. E.; Mangrum, J. B.; Farrell, N. P.;
Maruszak, M.; Bednarski, P. J.; Klein, F.; Jakupec, M. A.; Nazarov, A. A.;
Severin, K.; Keppler, B. K. J. Med. Chem. 2009, 52, 916–925.
(10) Ang, W. H.; Dyson, P. J. Eur. J. Inorg. Chem. 2006, 4003–4018.
(11) Yan, Y. K.; Melchart, M.; Habtemariam, A.; Sadler, P. J. Chem.
Commun. 2005, 4764–4776.
(12) Fernandez, R.; Melchart, M.; Habtemariam, A.; Parsons, S.;
Sadler, P. J. Chem. Eur. J. 2004, 10, 5173–5179.
ꢀ
ꢀ
(18) Novakova, O.; Nazarov, A. A.; Hartinger, C. G.; Keppler, B. K.;
Brabec, V. Biochem. Pharmacol. 2009, 77, 364–374.
(19) Lewis, J. A.; Puerta, D. T.; Cohen, S. M. Inorg. Chem. 2003, 42,
7455–7459.
r
2009 American Chemical Society
Published on Web 07/17/2009
pubs.acs.org/Organometallics