C O M M U N I C A T I O N S
low (entry 13).11 The use of aliphatic allyl reagents in the reaction is
still a challenge.
Table 1. Effects of Additives and Solvents on the Pd-Catalyzed
Reaction of 1a and 2aa
The absolute configuration of 5j was determined as (S,R,R) via its
X-ray diffraction analysis. This result provides support of the NMR
assignment of stereochemistry of 5a mentioned before.
5a
c e
,
entry
solvent
additiveb
3a:4a:5ac
yield%d
d.r.
ee%f
1
2
3
4
5
6
7
8
THF
THF
THF
THF
THF
THF
THF
THF
THF
THF
THF
THF
THF
toluene
Et2O
dioxane
DME
-
LiCl
6:29:65
6:14:80
11:19:70
20:33:47
8:80:12
8:31:61
7:19:74
5:26:69
7:25:68
23:17:60
-
6:77:17
-
13:28:59
14:35:51
16:25:59
10:14:76
60
73
58
40
-
47
62
50
51
46
trace
24l
trace
24
25
40
46
5:1
93
95
84
32
-
84
93
94
91
89
-
-
-
75
72
80
93
The present report realized the asymmetric cyclopropanation reaction
of acyclic amides with monosubstituted allyl substrates in the presence
of Pd-catalyst. Cyclopropane derivatives with three chiral centers were
provided with high diastereo- and enantioselectivities. The impact of
LiCl on the c/a- and diastereoselectivities was demonstrated. Further
investigations on the role of the ligand and the reaction mechanism in
detail as well as on the extension of the reaction scope and applications
of this methodology in organic synthesis are in progress.
12:1
6:1
3:1
4:1
5:1
9:1
11:1
8:1
3:1
-
5.4:1
-
3:1
3:1
5:1
11:1
LiBrg
LiClO4
LiI
g
g
-
LiClh g
,
Bn4NCl
NaCl
NaCli
KClj
LiCl
LiCl
LiCl
LiCl
LiCl
9
10
11
12k
13m
14
15
16
17
Acknowledgment. Financially supported by the Major Basic
Research Development Program (Grant 2006CB806106), National
Natural Science Foundation of China (20532050, 20672130, 20821002),
Chinese Academy of Sciences, Shanghai Committee of Science and
Technology, and Croucher Foundation of Hong Kong. This paper is
dedicated to Professor Li Xin Dai on the occasion of his 85th birthday.
LiCl
a Molar ratio of 1a/[Pd(C3H5)Cl]2/(Sphos,R)-L1/LiHMDS/2a ) 100/2/
4/100/120. b 100 mol % of additive was used. c Determined by GC.
d Isolated yield of 5a. e D.r. of 5a, the structure of minor diastereisomers
was not determined. f Determined by chiral HPLC. g Pd(dba)2 was used.
h 10 mol % of LiCl was added. i NaHMDS as the base. j KHMDS as the
base. k L2 was used. l Isolated yield of 3a, 4a and 5a. m L3 was the
ligand.
Supporting Information Available: General procedure for the Pd-
catalyzed cyclopropanation, NMR spectra and HPLC data for 5, cif file
of X-ray diffraction analysis of 5j. This material is available free of charge
References
(1) For reviews: (a) Trost, B. M.; Van Vranken, D. L. Chem. ReV. 1996, 96,
395. (b) Pfaltz, A.; Lautens, M. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York, 1999;
Vol. 2, p 833. (c) Trost, B. M.; Crawley, M. L. Chem. ReV. 2003, 103,
2921. (d) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.
(2) Hegedus, L. S.; Darlington, W. H.; Russell, C. E. J. Org. Chem. 1980, 45,
5193.
(3) (a) Hoffmann, H. M. R.; Otte, A. R.; Wilde, A. Angew. Chem., Int. Ed.
Engl. 1992, 31, 234. (b) Wilde, A.; Otte, A. R.; Hoffmann, H. M. R. J Chem.
Soc., Chem. Commun. 1993, 615. (c) Otte, A. R.; Wilde, A.; Hoffmann,
H. M. R. Angew. Chem., Int. Ed. Engl. 1994, 33, 1280. (d) Hoffmann,
H. M. R.; Otte, A. R.; Wilde, A.; Menzer, S.; Williams, D. J. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 100.
Table 2. Pd-Catalyzed Cyclopropanation of Acyclic Amides 1 with
Allyl Carbonates 2a
5
entry
R1
R2
R3
yield%b
d.r.c
ee%d
1
2
3
4
5
6
7
8
Me
Et
Ph
Ph
Ph
Ph
H
a, 73
b, 72
c, 72
d, 83
e, 69
f, 68
g, 67
h, 68
i, 67
12:1
12:1
4:1
95
97
94
96
94
96
84
91
83
92
93
98
89
H
H
H
H
H
H
H
H
H
H
Me
H
nPr
iPr
Me
Me
Me
Me
Me
iPr
Me
Me
Me
6:1
p-MeC6H5
p-MeOC6H5
p-FC6H5
p-ClC6H5
p-BrC6H5
p-BrC6H5
1-Naphthyl
Ph
15:1
23:1
11:1
7:1
8:1
5:1
8:1
30:1
3:1
(4) (a) Carfagna, C.; Mariani, L.; Musco, A.; Sallese, G.; Santi, R. J. Org.
Chem. 1991, 56, 3924. (b) Formica, M.; Musco, A.; Pontellini, R.; Linn,
K.; Mealli, C. J. Organomet. Chem. 1993, 448, C6. (c) Satake, A.; Nakata,
T. J. Am. Chem. Soc. 1998, 120, 10391. (d) Satake, A.; Koshino, H.; Nakata,
T. Chem. Lett. 1999, 49. (e) Grigg, R.; Kordes, M. Eur. J. Org. Chem.
2001, 707. (f) Shintani, R.; Park, S.; Hayashi, T. J. Am. Chem. Soc. 2007,
129, 14866.
9
10
11
12
13
j, 74
k, 68
l, 37
(5) (e) Satake, A.; Kadohama, H.; Koshino, H.; Nakata, T. Tetrahedron Lett.
1999, 40, 3597.
Me
m, 18
(6) (a) You, S. L.; Hou, X. L.; Dai, L. X.; Zhu, X. Z. Org. Lett. 2001, 3, 149.
(b) Yan, X. X.; Liang, C. G.; Zhang, Y.; Hong, W.; Cao, B. X.; Dai, L.-
X.; Hou, X.-L. Angew. Chem., Int. Ed. 2005, 44, 6544. (c) Zheng, W. H.;
Zheng, B. H.; Zhang, Y.; Hou, X.-L. J. Am. Chem. Soc. 2007, 129, 7718.
(d) Zhang, K.; Peng, Q.; Hou, X.-L.; Wu, Y. D. Angew. Chem., Int. Ed.
2008, 47, 1741.
a Molar ratio of 1/[Pd(C3H5)Cl]2/(Sphos,R)-L1/LiHMDS/2/LiCl ) 100/
2/4/100/120/100. b Isolated yield of 5. c D.r. of 5 determined by GC, the
structure of minor diastereoisomers was not determined. d Determined
by chiral HPLC.
(7) Some other examples of “hard” carbanions in Pd-catalyzed AAA reactions: (a)
Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 1999, 121, 6759. (b)
Braun, M.; Laicher, F.; Meier, T. Angew. Chem., Int. Ed. 2000, 39, 3494.
(c) Weiss, T. D.; Helmchen, G.; Kazmaier, U. Chem. Commun. 2002, 1270.
(d) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044. (e)
Burger, E. C.; Tunge, J. A. Org. Lett. 2004, 6, 4113. (f) Trost, B. M.; Xu,
J. J. Am. Chem. Soc. 2005, 127, 17180. (g) Trost, B. M.; Zhang, Y. J. Am.
Chem. Soc. 2006, 128, 4590. (h) Trost, B. M.; Xu, J.; Reichle, M. J. Am.
ee (entries 1-4 and 10), though the diastereoselectivity decreased when
the R1 group of 1 was n-Pr (entry 3) or i-Pr (entries 4 and 10). However,
the reaction of isobutanamide failed to give the desired product (not
shown in table). The electronic property of the substituent on the phenyl
ring in allyl reagents 2 has some impact on the diastereo- and
enantioselectivities of the reaction. The presence of an electron-donating
group in 2 favored the gain of 5 in higher diastereo- and enantiose-
lectivities (entries 5 and 6 vs 7-10). Cyclopropane product 5k in higher
enantioselectivity was also obtained when naphthyl substituted carbon-
ate 2 was used (entry 11). Note that gem-disubstituted allyl carbonate
could also be used, providing 5l with a chiral quaternary carbon center
on the cyclopropane ring with even higher diastereo- and enantiose-
lectivities, the dr ratio being 30:1 and ee being 98%, albeit the yield
was lower (entry 12).11 When crotyl carbonate was the reagent, high
enantioselectivity was given, but the yield and diastereoselectivity were
´
Chem. Soc. 2007, 129, 282. (i) Be´langer, E.; Cantin, K.; Messe, O.;
Tremblay, M.; Paquin, J.-F. J. Am. Chem. Soc. 2007, 129, 1034. (j) Deska,
J.; Kazmaier, U. Angew. Chem., Int. Ed. 2007, 46, 4570.
(8) SiocPhox is named after Shanghai Institute of Organic Chemistry where
they are developed. For its first report: You, S.-L.; Zhu, X.-Z.; Luo, Y.-
M.; Hou, X.-L.; Dai, L.-X. J. Am. Chem. Soc. 2001, 123, 7471.
(9) Some reports on the role of LiCl in Pd-catalyzed AAA: (a) Sjo¨gren,
M. P. T.; Hansson, S.; Åkermark, B.; Vitagliano, A. Organometallics 1994,
13, 1963. (b) Burckhardt, U.; Baumann, M.; Togni, A. Tetrahedron:
Asymmetry 1997, 8, 155. (c) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc.
1999, 121, 4545. (d) Cantat, T.; Ge´nin, E.; Giroud, C.; Meyer, G.; Jutand,
A. J. Organomet. Chem. 2003, 687, 365.
(10) Hou, X.-L.; Sun, N. Org. Lett. 2004, 6, 4399.
(11) The main products were allylation products.
JA902410W
9
J. AM. CHEM. SOC. VOL. 131, NO. 25, 2009 8735