Notes and references
1 L. D. Hohenschutz, E. A. Bell, P. J. Jewess, D. P. Leworthy, R. J.
Pryce, E. Arnold and J. Clardy, Phytochemistry, 1981, 20, 811–
814.
2 R. J. Nash, L. E. Fellows, J. V. Dring, C. H. Stirton, D. Carter,
M. P. Hegarty and E. A. Bell, Phytochemistry, 1988, 27, 1403–
1404.
3 For a review, see: (a) A. A. Watson, G. W. J. Fleet, N. Asano, R. J.
Molyneux and R. J. Nash, Phytochemistry, 2001, 56, 265–295; See also:
(b) G. K. Ostrander, N. K. Scribner and L. R. Rohrschneider, Cancer
Res., 1988, 48, 1091–1094; (c) P. S. Sunkara, D. L. Taylor, M. S. Kang,
T. L. Bowlin, P. S. Liu, A. S. Tyms and A. Sjoerdsma, Lancet, 1989,
1, 1206; (d) V. A. Johnson, B. D. Walker, M. A. Barlow, T. J. Paradis,
T. C. Chou and M. S. Hirsch, Antimicrob. Agents Chemother., 1989,
33, 53–57; (e) D. L. Taylor, P. S. Sunkara, P. S. Liu, M. S. Kang, T. L.
Bowlin and A. S. Tyms, AIDS, 1991, 5, 693–8; (f) D. O. Willenborg,
C. R. Parish and W. B. Cowden, Immunol. Cell Biol., 1992, 70, 369–
377.
4 For non chiral-pool syntheses, see: (a) J.-L. Reymond, A. A. Pinkerton
and P. Vogel, J. Org. Chem., 1991, 56, 2128–2135; (b) S. E. Denmark
and E. A. Martinborough, J. Am. Chem. Soc., 1999, 121, 3046–
3056; (c) P. Somfai, P. Marchand, S. Torsell and U. M. Lindstrom,
Tetrahedron, 2003, 59, 1293–1299; (d) Z. Zhao, L. Song and P. S.
Mariano, Tetrahedron, 2005, 61, 8888–8894; For other recent strategies,
see:; (e) L. Cronin and P. V. Murphy, Org. Lett., 2005, 7, 2691–2693;
(f) N. S. Karanjule, S. D. Markad, V. S. Shind and D. D. Dhavale,
J. Org. Chem., 2006, 71, 4667–4670; (g) T. Machan, A. S. Davis, B.
Liawruangrath and S. G. Pyne, Tetrahedron, 2008, 64, 2725.
5 For recent examples, see: (a) A. O. H. El-Nezhawy, H. I. El-Diwani
and R. R. Schmidt, Eur. J. Org. Chem., 2002, 4137–4142; (b) K. L.
Chandra, M. Chandrasekhar and V. K. Singh, J. Org. Chem., 2002, 67,
4630–4633; (c) F. Chevallier, E. Le, Grognec, I. Beaudet, F. Fliegel, M.
Evain and J.-P. Quintard, Org. Biomol. Chem., 2004, 2, 3128–3133; (d) J.
Ceccon, A. E. Greene and J.-F. Poisson, Org. Lett., 2006, 8, 4739–4742.
6 (a) A. Fu¨rst and P. A. Plattner, Helv. Chim. Acta, 1949, 32, 275–283;
(b) H. O. House and W. A. B. Reading, Modern Synthetic Reactions,
1972, pp. 300–301; For a recent example, see: (c) K. C. Nicolaou, Y.-P.
Sun, X.-S. Peng, D. Ploet and D. Y.-K. Chen, Angew. Chem., Int. Ed.,
2008, 47, 7310–7313.
Scheme 4 Completion of the synthesis. a GII = Grubbs 2nd generation
catalyst. b MP = 2-methoxypropene.
of hydroboration/oxidation and lactam reduction 18, together
with the corresponding unreduced lactam 19 (1:1.5 ratio), both
as single isomers (dr > 95:5), in a combined yield of 58%.
Since efforts to increase the transformation of 17 into 18 at
the expense of 19 proved unrewarding, diol 19 was converted
into its acetonide derivative, which underwent smooth reduction
with BH3 to provide the protected indolizidine (70%, 2 steps).
The cleavage of the numerous protecting groups in the two
indolizidines with hydrochloric acid in ethanol led, in each case, to
(+)-castanospermine in > 90% yield. The synthetically derived
7 For
a review on the formation of alkoxy-substituted cyclic
olefins through metathesis, see: P. Van de Weghe, P. Bisseret, N.
Blanchard and J. Eustache, J. Organomet. Chem., 2006, 691, 5078–
5108.
8 For examples of hydroboration of alkoxy-substituted cyclic olefins, see:
(a) M. E. Jung and L. A. Light, J. Am. Chem. Soc., 1984, 106, 7614–
7618; (b) H. Mattes and C. Benezra, J. Org. Chem., 1988, 53, 2732–2737;
(c) P. E. Peterson and M. Stepanian, J. Org. Chem., 1988, 53, 1903–1907;
(d) G. Stork, P. C. Tang, M. Casey, B. Goodman and M. Toyota, J. Am.
Chem. Soc., 2005, 127, 16255–16262.
9 L. Testaferri, M. Tiecco, M. Tingoli, D. Bartoli and A. Massoli,
Tetrahedron, 1985, 41, 1373–1384.
10 (R)-1-(2,4,6-Triisopropylphenyl)ethanol. See: P. Delair, A. M.
Kanazawa, M. M. B. de Azevedo and A. E. Greene, Tetrahedron:
Asymmetry, 1996, 7, 2707–2710.
(+)-castanospermine ([a]20 +78.0 (c 0.75, H2O), mp 204–206 ◦C
D
(dec)) was spectroscopically and chromatographically identical
with an authentic sample of the natural product.16
In summary, we have developed a new, efficient strategy, based
on sequential enol ether metathesis—hydroboration/oxidation for
the introduction of the all equatorial hydroxyl substituents on
the six membered ring of (+)-castanospermine. Using this novel
approach, a highly stereoselective non chiral-pool synthesis of
(+)-castanospermine could be realized in 3.7% overall yield and
17 steps. Since several other biologically active polyol natural
products share this trans-trans hydroxyl arrangement (inter alia,
deoxynojirimycin, pancratistatin, siculinine, calystegin B2), this
metathesis–hydroboration/oxidation tandem should find addi-
tional application.
11 B. Darses, A. Milet, C. Philouze, A. E. Greene and J.-F. Poisson, Org.
Lett., 2008, 10, 4445–4447.
12 J. Ceccon, A. E. Greene and J.-F. Poisson, Synlett, 2005, 1413–
1416.
13 (a) X.-P. Gu, I. Ikeda and M. Okahara, Bull. Chem. Soc. Jpn., 1987, 60,
397–398; (b) X.-P. Gu, N. Nishida, I. Ikeda and M. Okahara, J. Org.
Chem., 1987, 52, 3192–3196; (c) S. Z. Janicki, J. M. Fairgrieve and P. A.
Petillo, J. Org. Chem., 1998, 63, 3694–3700.
14 (a) V. K. Aggarwal and A. M. Daly, Chem. Commun., 2002, 2490–2491;
(b) J. Louie and R. H. Grubbs, Organometallics, 2002, 21, 2153–2164;
(c) U. Majumder, J. M. Cox, H. W. B. Johnson and J. D. Rainier,
Chem.–Eur. J., 2006, 12, 1736–1746.
15 S. H. Hong, D. P. Sanders, C. W. Lee and R. H. Grubbs, J. Am. Chem.
Soc., 2005, 127, 17160–17161.
16 Purchased from Sigma-Aldrich.
Acknowledgements
Financial support from the CNRS and the Universite´ Joseph
Fourier (UMR 5250, ICMG FR 2607) is gratefully acknowledged.
We thank Professor P. Dumy for his interest in our work.
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 2029–2031 | 2031
©