10.1002/anie.201900228
Angewandte Chemie International Edition
COMMUNICATION
observations provide evidence for the formation of radical
intermediates at the benzylic position: (1) inhibition of the
reaction by excess N-oxyl, which could be attributed to its
conjunction with a chiral Ni catalyst, enabled the formation of
dicarbofunctionalized products with high enantioselectivity. We
anticipate that this insight could inform catalyst development for
interaction with organic radicals; (2) formation of benzylic dimers, other Ni-catalyzed cross-coupling reactions.
such as 32, with several substrates (eq 1);[32] (3) selective
formation of trans-diphenylation product 33 in 70% ee with
indene (eq 2).
A difunctionalization going through olefin
Acknowledgements
migratory insertion has been reported to form cis-products.[33]
The trans-diastereoselectivity observed here could arise from a
cis-migratory insertion, followed by reversible radical ejection
that scrambles the benzylic stereocenter as the coordination
favors the less-hindered face (step vi, Scheme 3). This proposal
serves as an experimental support for Kozlowski and Molander’s
computational study.[24] The observation of 70% ee of 33 could
rule out free phenyl radical addition to indene. In Scheme 3, we
present a plausible mechanism. Detailed mechanistic study is
underway to fully elucidate the sequence of reagent activation
and the identity of the enantio-determining step.
This work was supported by the National Science Foundation
under Award Number DMR-1420073. The NMR cryoprobe is
supported by NIH (S10 OD016343). T.D. is grateful to the Sloan
Foundation (FG-2018-10354). D.A. thanks Prof. Jim Canary for
sharing chiral HPLC columns, Dr. Giulio Volpin and Peter
Rühmann (Trauner group) for help purifying 14 and 26 using
preparatory HPLC and Lotus Separations for determining the ee
of 24.
Keywords: Diarylation • Alkenes • Nickel • Asymmetric catalysis
• ABNO
MeO
Ni(DME)Br2 (10 mol%)
iBu-biOx (20 mol%)
Ph
30
(1)
+
Ph
ABNO (8 mol%)
Zn (2 equiv.)
OMe
PhBr
[1]
[2]
[3]
[4]
a) W. S. Knowles, Angew. Chem. Int. Ed. 2002, 41, 1998-2007; b) R.
Noyori, Angew. Chem. Int. Ed. 2002, 41, 2008-2022.
+
57%
DMPU:THF = 1:1, 10 ºC
OMe
H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994,
94, 2483-2547.
32 2%
S. W. M. Crossley, C. Obradors, R. M. Martinez, R. A. Shenvi, Chem.
Rev. 2016, 116, 8912-9000.
Ph
Ni(DME)Br2 (20 mol%)
iBu-biOx (40 mol%)
a) R. K. Dhungana, S. KC, P. Basnet, R. Giri, The Chemical Record
2018, 18, 1314-1340; b) R. Giri, S. Kc, The Journal of Organic
Chemistry 2018, 83, 3013-3022.
Ph
(2)
ABNO (16 mol%)
Zn (2 equiv.)
DMPU, 25 ºC
PhBr
+
33
17% yield, 70% ee
no cis-product observed
[5]
a) K. B. Urkalan, M. S. Sigman, Angew. Chem. Int. Ed. 2009, 48, 3146-
3149; b) W. You, M. K. Brown, J. Am. Chem. Soc. 2014, 136, 14730-
14733; c) Z. Liu, T. Zeng, K. S. Yang, K. M. Engle, J. Am. Chem. Soc.
2016, 138, 15122-15125; d) T. Qin, J. Cornella, C. Li, L. R. Malins, J. T.
Edwards, S. Kawamura, B. D. Maxwell, M. D. Eastgate, P. S. Baran,
Science 2016, 352, 801-805; e) S. Thapa, P. Basnet, R. Giri, J. Am.
Chem. Soc. 2017, 139, 5700-5703; f) A. Garcia-Dominguez, Z. Li, C.
Nevado, J. Am. Chem. Soc. 2017, 139, 6835-6838; g) B. Shrestha, P.
Basnet, R. K. Dhungana, S. Kc, S. Thapa, J. M. Sears, R. Giri, J. Am.
Chem. Soc. 2017, 139, 10653-10656; h) J. Derosa, V. T. Tran, M. N.
Boulous, J. S. Chen, K. M. Engle, J. Am. Chem. Soc. 2017, 139,
10657-10660; i) P. Gao, L. A. Chen, M. K. Brown, J. Am. Chem. Soc.
2018, 140, 10653-10657; j) P. Basnet, R. K. Dhungana, S. Thapa, B.
Shrestha, S. Kc, J. M. Sears, R. Giri, J. Am. Chem. Soc. 2018, 140,
7782-7786; k) S. Kc, R. K. Dhungana, B. Shrestha, S. Thapa, N.
Khanal, P. Basnet, R. W. Lebrun, R. Giri, J. Am. Chem. Soc. 2018, 140,
9801-9805; l) P. Basnet, S. Kc, R. K. Dhungana, B. Shrestha, T. J.
Boyle, R. Giri, J. Am. Chem. Soc. 2018, 140, 15586-15590.
A. H. Cherney, N. T. Kadunce, S. E. Reisman, Chem. Rev. 2015, 115,
9587-9652.
Ph
1/2 Zn
Ph
(vii)
Ar
1/2 ZnBr2
[NiI]Br
(i)
[Ni0]
Ph
Ar
[NiIII]Br
Ph
[NiII]Br
Ph
Ar
PhBr
Ph
(ii)
(vi)
[NiII]–Ph
Br
1/2 Zn
1/2 ZnBr2
(v)
(iii)
PhBr
[NiI]
(iv)
Ph
[NiI]–Ph
Ar
Ar
Scheme 3. Proposed Mechanism.
[6]
[7]
a) Y. Yasui, H. Kamisaki, Y. Takemoto, Org. Lett. 2008, 10, 3303-3306;
b) H. Cong, G. C. Fu, J. Am. Chem. Soc. 2014, 136, 3788-3791; c) W.
You, M. K. Brown, J. Am. Chem. Soc. 2015, 137, 14578-14581; d) K.
Wang, Z. Ding, Z. Zhou, W. Kong, J. Am. Chem. Soc. 2018, 140,
12364-12368.
In summary, we developed a Ni-catalyzed asymmetric
diarylation reaction of vinylarenes. The reaction represents a
compelling method for preparing chiral a,a,b-triarylated ethane
scaffolds. The use of reducing conditions with aryl bromides as
the coupling partner avoids the use of stoichiometric
organometallic reagents and allows for tolerance of a broad
range of functional groups. During catalyst development, we
discovered that the use of an auxiliary N-oxyl ligand, in
[8]
[9]
a) B. J. Stokes, L. Liao, A. M. de Andrade, Q. Wang, M. S. Sigman, Org.
Lett. 2014, 16, 4666-4669; b) X. Wu, H.-C. Lin, M.-L. Li, L.-L. Li, Z.-Y.
Han, L.-Z. Gong, J. Am. Chem. Soc. 2015, 137, 13476-13479; c) Y.
Xiong, G. Zhang, J. Am. Chem. Soc. 2018, 140, 2735-2738.
a) F. Wang, P. Chen, G. Liu, Acc. Chem. Res. 2018, 51, 2036-2046; b)
W. Sha, L. Deng, S. Ni, H. Mei, J. Han, Y. Pan, ACS Catalysis 2018, 8,
This article is protected by copyright. All rights reserved.