3044
F. Bureš et al. / Tetrahedron Letters 50 (2009) 3042–3045
Table 2
Acknowledgments
The asymmetric Henry reactiona
This work was supported by the Czech Science Foundation
(203/07/P013) and by the Ministry of Education, Youth, and Sport
of the Czech Republic (MSM002167501).
Timeb (h)
Yieldc (%)
ee (%) configurationd
Supplementary data
Entry
Ligand
1
2
3
4
5
6
7
8
9
2
24
90
8 (R)
Supplementary data (experimental procedures, 1H, 13C, 1H-1H
COSY, HMQC, and HMBC NMR spectra and representative GC/MS
or MALDI data for all new compounds as well as the X-ray struc-
tures of the diamine hydrochloride and imidazoline 2) associated
with this article can be found, in the online version, at
3a/3b
4a/4b
5b
36/36
36/36
36
92/94
94/92
87
21 (R)/46 (S)
43 (R)/51 (S)
45 (S)
6b
36
90
60 (S)
7a/7b
8a/8b
9a
10a
11a
24/24
54/54
36
24
48
92/89
81/76
92
89
87
41 (R)/67 (S)
29 (R)/46 (S)
17 (R)
18 (R)
17 (R)
10
References and notes
a
Reactions were performed on a 0.5 mmol scale with Cu(OAc)2 (10%) and ligands
(10.5%) with nitromethane (10 equiv) in ethanol (5 mL) under N2 at room
temperature.
1. (a) Wiley, R. H.; Bennett, L. L. Chem. Rev. 1949, 44, 447–476; (b) Frump, J. A.
Chem. Rev. 1971, 71, 483–505.
2. Ferm, R. J.; Riebsomer, J. L. Chem. Rev. 1954, 54, 593–613.
3. (a) Adams, N.; Schubert, U. S. Adv. Drug Delivery Rev. 2007, 59, 1504–1520; (b)
Dardonville, C.; Rozas, I. Med. Res. Rev. 2004, 24, 639–661.
b
Monitored by TLC (SiO2; hexane/EtOAc 2:1).
Isolated yields after column chromatography.
Determined by chiral HPLC analysis on a Daicel Chiracel OB column and con-
c
d
4. For reviews on oxazolines see: (a) Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem.
Rev. 2006, 106, 3561–3651; (b) McManus, H. A.; Guiry, P. J. Chem. Rev. 2004,
104, 4151–4202; (c) Gómez, M.; Muller, G.; Rocamora, M. Coord. Chem. Rev.
1999, 193–195, 769–835; (d) Zhou, J.; Tang, Y. Chem. Soc. Rev. 2005, 34, 664–
676; (e) Jönsson, C.; Hallman, K.; Andersson, H.; Stemme, G.; Malkoch, M.;
Malmström, E.; Hult, A.; Moberg, C. Bioorg. Med. Chem. Lett. 2002, 12, 1857–
1861; (f) Fraile, J. M.; García, J. I.; Mayoral, J. A. Coord. Chem. Rev. 2008, 252,
624–646.
5. (a) Bastero, A.; Bella, A. F.; Fernández, F.; Jansat, S.; Claver, C.; Gómez, M.;
Muller, G.; Ruiz, A.; Font-Bardía, M.; Solans, X. Eur. J. Inorg. Chem. 2007, 132–
139; (b) Morimoto, T.; Tachibana, K.; Achiwa, K. Synlett 1997, 783–785; (c)
Boland, N. A.; Casey, M.; Hynes, S. J.; Matthews, J. W.; Müller-Bunz, H.; Wilkes,
P. Org. Biomol. Chem. 2004, 2, 1995–2002.
6. (a) Bhor, S.; Anilkumar, G.; Tse, M. K.; Klawonn, M.; Döbler, C.; Bitterlich, B.;
Grotevendt, A.; Beller, M. Org. Lett. 2005, 7, 3393–3396; (b) Anilkumar, G.; Bhor,
S.; Tse, M. K.; Klawonn, M.; Bitterlich, B.; Beller, M. Tetrahedron: Asymmetry
2005, 16, 3536–3561.
7. (a) Bastero, A.; Ruiz, A.; Claver, C.; Castillón, S. Eur. J. Inorg. Chem. 2001, 3009–
3011; (b) Bastero, A.; Claver, C.; Ruiz, A.; Castillón, S.; Daura, E.; Bo, C.;
Zangrando, E. Chem. Eur. J. 2004, 10, 3747–3760.
firmed from [a
] values.22a
the enantioselectivities of such ligands could be varied easily by
attaching electron-donating (methoxy) or electron-withdrawing
(nitro) groups on the benzoyl moiety (Table 1, entries 6 and 7,
series b).With respect to the proposed mechanism of the cop-
per(II)-catalyzed asymmetric Henry reaction as described by Evan-
s,22a and to the identical bidentate N@C–C@N coordination pocket
and stereochemistry of 6b–8b, the observed variation in the
enantioselectivities can be explained as a result of the electronic
density on the copper(II) ion. Thus, the methoxy group in ligand
7b resulted in higher basicity of the imidazoline nitrogens and,
subsequently, higher electron saturation of the active Cu(II)-com-
plex. The generated complex possessed higher stability and, there-
fore, the Henry reaction may take place exclusively on the active
chiral catalyst with good asymmetric induction (ee of 67%). Since
no additional base was used, such an electron-rich catalyst also
facilitated the deprotonation of nitromethane which was accom-
plished by acetate in the rate-limiting step21c which resulted in
the shortest reaction time (24 h). This finding is in agreement with
that observed for other Cu(II) carboxylates applied in the Henry
reaction while carboxylates with higher basicity (e.g., 4-methoxy-
benzoate19a or 2,4-dimethoxybenzoate22a) gave short reaction
times and high ees. The nitro group in 8b had the opposite effect
and, therefore, the enantiomeric excess was lower (46%) while
the reaction time was longer (54 h). N-Sulfonyl imidazolines 9a–
11a were able to catalyze the Henry reaction affording the
expected nitroaldol product in good chemical yields of 87–92%,
but the enantioselectivities were modest (Table 2, entries 8–10).
Thus, the electronegative N-sulfonyl linker seemed to be unsuit-
able for electronic fine-tuning. Application of the N,N0-disubsti-
tuted camphordiamines 12–14 as ligands in the Henry reaction
did not afford any nitroaldol product even after a prolonged reac-
tion time of up to 72 h.
8. (a) Menges, F.; Neuburger, M.; Pfaltz, A. Org. Lett. 2002, 4, 4713–4716; (b) Guiu,
E.; Claver, C.; Benet-Buchholz, J.; Castillón, S. Tetrahedron: Asymmetry 2004, 15,
3365–3373.
9. Casey, M.; Smyth, M. P. Synlett 2003, 102–106.
10. (a) Davenport, A. J.; Davies, D. L.; Fawcett, J.; Russell, D. R. J. Chem. Soc., Perkin
Trans. 1 2001, 1500–1503; (b) Davenport, A. J.; Davies, D. L.; Fawcett, J.; Russell,
D. R. J. Organomet. Chem. 2006, 691, 3445–3450; (c) Tsogeova, S. B.; Dürner, G.;
Bolte, M.; Göbel, M. W. Eur. J. Org. Chem. 2003, 1661–1664.
11. Busacca, C. A.; Grossbach, D.; So, R. C.; O’Brien, E. M.; Spinelli, E. M. Org. Lett.
2003, 5, 595–598.
12. Xu, J.; Guan, Y.; Yang, S.; Ng, Y.; Peh, G.; Tan, C.-H. Chem. Asian J. 2006, 1, 724–
729.
13. Nakamura, S.; Hyodo, K.; Nakamura, Y.; Shibata, N.; Toru, T. Adv. Synth. Catal.
2008, 350, 1443–1448.
14. Ma, K.; You, J. Chem. Eur. J. 2007, 13, 1863–1871.
15. (a) Boland, N. A.; Casey, M.; Hynes, S. J.; Matthews, J. W.; Smyth, M. P. J. Org.
Chem. 2002, 67, 3919–3922; (b) Concellón, J. M.; Riego, E.; Suárez, J. R.; García-
Granda, S.; Díaz, M. R. Org. Lett. 2004, 6, 4499–4501; (c) Fujioka, H.; Murai, K.;
Kubo, O.; Ohba, Y.; Kita, Y. Tetrahedron 2007, 63, 638–643; (d) You, S.-L.; Kelly,
J. W. Org. Lett. 2004, 6, 1681–1683; (e) Halland, N.; Hazell, R. G.; Jørgensen, K. A.
J. Org. Chem. 2002, 67, 8331–8338; (f) Peddibhotla, S.; Jayakumar, S.; Tepe, J. J.
Org. Lett. 2002, 4, 3533–3535; (g) Sharma, V.; Tepe, J. J. Org. Lett. 2005, 7, 5091–
5094; (h) Thomas, P. J.; Axtell, A. T.; Klosin, J.; Peng, W.; Rand, C. L.; Clark, T. P.;
Landis, C. R.; Abboud, K. A. Org. Lett. 2007, 9, 2665–2668; (i) Arai, T.; Mizukami,
T.; Yokoyama, N.; Nakazato, D.; Yanagisawa, A. Synlett 2005, 2670–2672; (j)
Peters, R.; Fischer, D. F. Org. Lett. 2005, 7, 4137–4140.
16. (a) Kizirian, J.-C. Chem. Rev. 2008, 108, 140–205; (b) Bennani, Y. L.; Hanessian, S.
Chem. Rev. 1997, 97, 3161–3196; (c) Lucet, D.; Le Gall, T.; Mioskowski, C.
Angew. Chem., Int. Ed. 1998, 37, 2580–2627.
17. Busacca, C. A.; Campbell, S.; Dong, Y.; Grossbach, D.; Ridges, M.; Smith, L.;
Spinelli, E. J. Org. Chem. 2000, 65, 4753–4755.
18. Busacca, C. A.; Grossbach, D.; Campbell, S. J.; Dong, Y.; Eriksson, M. C.; Harris, R.
E.; Jones, P.-J.; Kim, J.-Y.; Lorenz, J. C.; McKellop, K. B.; O’Brien, E. M.; Qiu, F.;
Simpson, R. D.; Smith, L.; So, R. C.; Spinelli, E. M.; Vitous, J.; Zavattaro, C. J. Org.
Chem. 2004, 69, 5187–5195.
In summary, starting from the optically pure camphordiamine,
13 new camphor-annulated imidazolines were synthesized involv-
ing modular synthetic steps. Whereas regioisomers a as ligands in
the asymmetric Henry reaction afforded (R)-nitroaldols, regioi-
somers b gave the (S)-products. The latter also gave higher ees of
up to 67%. The enantioselectivity of the N-benzoylated ligands
was strongly affected by the electronic nature of the benzoyl moi-
ety. Thus, either (R)- or (S)-nitroaldol products could be obtained
with one set of ligands, while N-modification of the ligand allowed
tailoring of the degree of enantioselectivity.
ˇ
19. (a) Bureš, F.; Szotkowski, T.; Kulhánek, J.; Pytela, O.; Ludwig, M.; Holcapek, M.
Tetrahedron: Asymmetry 2006, 17, 900–907; (b) Marek, A.; Kulhánek, J.; Bureš,
F. Synthesis 2009, 2, 325–331; (c) Kulhánek, J.; Bureš, F.; Šimon, P.; Schweizer,